期刊文献+

基于高斯混合及相对熵测度的图像分割 被引量:3

Image segmentation based on Gaussian hybrid model and relative entropy measure
下载PDF
导出
摘要 针对图像分割问题,结合高斯混合模型与信息论中的相对熵测度概念,提出一种新的图像阈值化方法。在提出方法中把图像阈值化问题看成是两个概率向量之间的匹配问题,因此首先用高斯混合模型去拟合图像直方图的灰度级分布,然后用相对熵测度去度量拟合分布与图像原灰度级分布之间的差异,并把该度量作为图像阈值化的准则函数。在对图像实施分割时,通过在图像灰度级范围中求取所定义的准则函数的最小值获得最佳阈值。在NDT、SAR及红外图像上的分割实验中用提出方法与传统及最新的图像阈值化方法进行比较,结果表明提出方法获得的结果要优于相比较方法获得的分割结果,因此提出方法是一种有效的图像分割方法。 Aiming at the problem of image segmentation,a new image thresholding method based on Gaussian hybrid model and relative entropy measure is presented. In the proposed method, the problem of image segmentation is seen as a matching problem between two probability vectors. The gray level distribution of image histogram is fitted by Gaussian hybrid model firstly. Then the difference between fitting distribution and gray level distribution of original image is measured by relative entropy measure, and the measurement is used as the criterion function for image thresholding. When the image is segmented, the optimal threshold is obtained by minimizing the criterion function in the range of gray levels. For demonstrating the effectiveness of the proposed method, the experiments on NDT, SAR and infrared images are carried out and the performances of the proposed method is compared with those of three famous tradition methods and two state-of-the-art methods. The experiment results indicate that the proposed method can obtain better segmentation results, and this method is an effective approach for image segmentation.
出处 《激光与红外》 CAS CSCD 北大核心 2015年第9期1112-1118,共7页 Laser & Infrared
基金 湖南省高等学校科学研究优秀青年项目(No.14B124) 湖南省科技计划项目(No.2014NK3125) 湖南文理学院重点(建设)学科建设项目 湖南文理学院博士科研启动项目资助
关键词 图像分割 相对熵测度 高斯混合模型 直方图阈值化 image segmentation relative entropy measure Gaussian hybrid model histogram thresholding
  • 相关文献

参考文献15

  • 1李效珍,钱卫东,叶建亚,李婷,赵振兵.基于L_0平滑和随机游走的变电设备红外图像分割[J].激光与红外,2014,44(7):810-814. 被引量:2
  • 2Sezgin M, Sankur B. Survey over image thresholding tech- niques and quantitative performance evaluation [ J ]. Jour- nal of Electronic Imaging,2004,13 ( 1 ) : 146 - 165.
  • 3Otsu N. A threshold selection method from gray-level his- tograms [ J ]. IEEE Transactions on Systems, Man, and Cy- bernetics, 1979,9 ( 1 ) :62 - 66.
  • 4Kittler J, lllingworth J. Minimum error thresholding [ J ]. Pattern Recognition, 1986,19( 1 ) :41 -47.
  • 5Kapur J, Sahoo P, Wong A. A new method for gray-level picture thresholding using the entropy of the histogram [ J ]. Computer Vision, Graphics, and Image Processing, 1985,29(3) :273 -285.
  • 6Bhandari A, Kumar A, Singh G. Modified artificial bee colony based computationally efficient multilevel threshol- ding for satellite image segmentation using Kapur' s, Otsu and Tsallis functions [ J ]. Expert Systems with Applica- tions, 2015,42 ( 3 ) : 1573 - 1601.
  • 7Li C ,Lee C. Minimum cross entropy thresholding[ J]. Pat- tern Recognition, 1993,26 (4) : 617 - 625.
  • 8Sahoo P, Arora G. A thresholding method based on two-di- mensional Renyi ' s entropy [ J ]. Pattern Recognition, 2004,37(6) :1149 - 1161.
  • 9Sahoo P, Arora G. Image thresholding using two-dimen- sional Tsallis-Havrda-Charvdt entropy [ J ]. Pattern Recog- nition Letters,2006,27(6) :520 - 528.
  • 10Lin Q, Ou C. Tsallis entropy and the long - range correla- tion in image thresholding[ J ]. Signal Processing,2012,92 (12) :2931 -2939.

二级参考文献52

共引文献36

同被引文献29

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部