期刊文献+

基于气体动力学和粒子质量输运的氦等离子体射流仿真 被引量:4

Simulation of Helium Plasma Jet Based on Gas Dynamics and Species Mass Transportation
原文传递
导出
摘要 为了研究气体体积流量对氦等离子体射流长度的影响,建立了圆柱体3维计算域,仿真得到不同气体体积流量下的气流边界3维图像、射流的速度与速度矢量图像以及气体质量分数,并将仿真结果与实验数据进行对比分析。考虑高体积流量下湍流对等离子体射流的影响,求解得到Navier-Stokes、RNG k–ε和粒子质量物质输运等方程。仿真结果表明,当流动处于层流时,随着体积流量的增加,轴向的氦气速度与质量分数逐渐增大,与射流长度随氦气流速的增大而变长的实验结果相符;当流动处于湍流时,氦气的轴向质量分数骤然减小,与实验中观察到的当氦气体积流量很大时射流长度反而变短的现象基本相符。 In order to investigate the influence of gas volume flow rate on length of helium plasma jet, by establishing cylindrical three-dimensional computational domain, we simulated three-dimensional image of gas boundary, plasma jet velocity image, velocity vector image, and gas mass fraction under different volume flow rates. Furthermore, the simulation results were verified by experiments. Considering the influence of turbulence under high volume flow rate condition on plasma jet discharge, we solved the Navier-Stokes, RNG k-t turbulence equation and species mass transpor- tation equation. The simulation results showed that, when the flow was laminar, the axial helium velocity and mass fraction increased with the gas volume flow rate, which was consistent with experimental results that helium plasma plume length increased with the gas volume flow rate. When the flow was turbulent, the axial helium mass fraction de- creased, which was in agree with experimental results that helium plasma plume length decreased with increasing the gas volume flow rate.
出处 《高电压技术》 EI CAS CSCD 北大核心 2015年第9期2903-2909,共7页 High Voltage Engineering
基金 国家自然科学基金(51222701 51207154) 国家重点基础研究发展计划(973计划)(2014CB239505–3)~~
关键词 氦等离子体 射流长度 气体体积流量 层流 湍流 氦气质量分数 数值仿真 helium plasma jet jet length gas volume flow rate laminar flow turbulence flow helium mass fraction numerical simulation
  • 相关文献

参考文献28

  • 1Xian Y B, Wu S Q, Wang Z, et al. Discharge dynamics and modes of an atmospheric pressure non-equilibrium air plasma jet[J]. Plasma Processes and Polymers, 2013, 10(4): 372-378.
  • 2Fang Z, Yang J, Liu Y, et al. Surface treatment of polyethylane tereph- thalate to improving hydrophilicity using atmospheric pressure plasma jet[J]. IEEE Transactions on Plasma Science, 2013, 41(6): 1627-1634.
  • 3Li G, Le P S, Li H P, et al. Effects of the shielding cylinder and sub- strate on the characteristics of an argon radio-frequency atmospheric glow discharge plasma jet[J]. Journal of Applied Physics, 2010, 107(11): 103304.
  • 4Laroussi M, Akan T. Arc-free atmospheric pressure cold plasma jets: a review[J]. Plasma Processes and Polymers, 2007, 4(9): 777-788.
  • 5Lu X, Naidis G V, Laroussi M, et al. Guided ionization waves: theory and experiments [J]. Physics Reports, 2014, 540(3): 123-166.
  • 6赵兵兵,何立明,兰宇丹,丁未,王育虔.等离子体射流点火器点火特性的实验研究[J].高电压技术,2013,39(7):1687-1691. 被引量:13
  • 7刘建峰,方志,周耀东.内电极直径对大气压氩等离子体射流放电特性的影响[J].高电压技术,2014,40(4):1214-1221. 被引量:6
  • 8Laroussi M, Lu X. Room-temperature atmospheric pressure plasma plume for biomedical applications[J]. Applied Physics Letters, 2005, 87(11): 113902.
  • 9Sands B L, Ganguly B N, Tachibana K. A streamer-like atmospheric pressure plasma jet[J]. Applied Physics Letters, 2008, 92(15): 151503.
  • 10刘文正,严伟,郝宇翀.大气压射流等离子体放电特性及其灭菌效果[J].强激光与粒子束,2010,22(12):2984-2988. 被引量:12

二级参考文献125

共引文献400

同被引文献60

  • 1Koizumi H, Kakami A, FumtaY, et al. Liquid propellant pulsed plasma thruster[C]//28~h International Electric Propulsion Conference. Toul- ouse, France: IEPC, 2003: 1-10.
  • 2Koizumi H, Kawazoe Y, Komurasaki IC Effect of solute mixing in the liquid propellant of a pulsed plasma thruster[J]. Vacuum, 2006 80(1): 11-12.
  • 3Scharlemann C A, Yoke M T. Pulsed plasma thruster using water propellant, part I: investigation of thrust behavior and mechanism[C]// 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Huntsville, USA: AIAA, 2003: 5022.
  • 4Scharlemann C A, Yoke M T. Pulsed plasma thruster using water propellant, part II: thruster operation and performance evaluation[C]// 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Huntsville, USA: AIAA, 2003: 5023.
  • 5Simon D L, Emhoff H B. Experimental evaluation of a micro liquid pulsed plasma thruster concept[C]// 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento, USA: AIAA, 2006: 4330.
  • 6Koizumi H, Kakami A, EurutaY, etal. Design and performance of liquid propellant pulsed plasma thruster [J]. Vacuum, 2004, 73(3): 419-425.
  • 7Koizumi H, Furtua ~, Komurasaki K, et aL A pulsed plasma thruster using water as the propellant[C]//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Fort Lauderdale, USA: AIAA, 2004 3460.
  • 8Scharlemann C A, Yoke M T, Turchi P J. Alternative propellants for pulsed plasma thrusters[C] // 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Indianapolis, USA: AIAA, 2002: 4270.
  • 9Scharlemann C A. Investigation of thrust mechanisms in a water fed pulsed plasma thruster [D]. Columbus, USA: The Ohio State Univer- sit'y, 2003: 1-170.
  • 10杨乐脉冲等离r体推力器工作过程理论和实验研究[D].长沙:国防科技大学,2007:1—114.

引证文献4

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部