期刊文献+

基于ART1用户聚类的Web预取模型研究

Research on Web Prefetching Model Based on ART1 User Clustering
下载PDF
导出
摘要 传统的Web预取机制所采用的预测算法主要针对用户个人预取,随着用户数量激增会加重网络负载,降低网络资源利用率。针对这一问题,在综合分析经典ART1神经网络模型和预取系统的基础上,提出一种基于用户聚类的UCPM模型预取新方法。首先,基于改进的ART1算法对用户访问序列特征向量进行聚类,挖掘兴趣相似的用户集合;然后,针对自底向上权重最大值所关联用户群的兴趣进行预取;最后,在Web预取系统上验证该方法的有效性及可靠性。实验结果表明,UCPM模型表现出较好的聚类效果,同时应用在预取系统保持了较高的预测准确率,降低了延迟比和流量开销比。 Prediction algorithm of traditional prefetching mechanism adopted by the invisible network load will increase the utilization rate,reduce the cyber source rate. In view of this,through the comprehensive analysis of the classical ART1 neural network model and the prefetching system,a new method of UCMP prefetching model is proposed based on user clustering. Firstly,based on improved traditional ART1 algorithm for clustering user access sequence feature vector,mine the similar interests of a user set,and then prefetching technique predicts the destination pages for user set on the basis of bottom-up maximum weight value. Finally,the experiments on Web prefetching system verify the effectiveness and reliability of the proposed algorithm. Experimental results show that the model exhibits better cluste-ring effect,at the same time,the prediction accuracy in prefetching system has been retained highly,lowering the ratio of latency and traf-fic.
作者 姚瑶 张慧
出处 《计算机技术与发展》 2015年第9期106-110,共5页 Computer Technology and Development
基金 国家自然科学基金资助项目(U1304603) 2012年郑州市科技计划项目(121PPTGG364)
关键词 ART1神经网络 用户聚类 WEB预取 延迟比 流量开销比 ART1 NN user clustering Web prefetching ratio of latency ratio of traffic
  • 相关文献

参考文献13

二级参考文献58

  • 1赵世奇,刘挺,李生.一种基于主题的文本聚类方法[J].中文信息学报,2007,21(2):58-62. 被引量:23
  • 2赵鹏,蔡庆生.一种基于《知网》的中文文本聚类算法的研究[J].计算机工程与应用,2007,43(12):162-163. 被引量:7
  • 3董振东,董强,郝长伶.知网的理论发现[J].中文信息学报,2007,21(4):3-9. 被引量:99
  • 4BENEVENUTO F,RODRIGUES T,CHA M,et al.Characterizing user behavior in online social networks[C]// Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement.New York:ACM,2009:49-62.
  • 5SCELLATO S,MASCOLO C.Measuring user activity on an online location-based social network[C]// Proceedings of Third International Workshop on Network Science for Communication Networks.Piscataway:IEEE,2011:918-923.
  • 6CHENG Z,CAVERLEE J,LEE K,et al.Exploring millions of footprints in location sharing services[C]// ICWSM 11:Fifth International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI,2011:282.
  • 7NOULAS A,SCELLATO S,MASCOLO C,et al.An empirical study nf geographic user activity patterns in foursquare[C]// ICWSM 11:Fifth International AAAI Conference on Weblogs and Social Media.Barcelona,Spain:AAAI,2011:570-573.
  • 8CHO E,MYERS S A,LESKOVEC J.Friendship and mobility:User movement in location-based social networks[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2011:1082-1090.
  • 9HUNG C-C,CHANG C-W,PENG W-C.Mining trajectory profiles for discovering user communities[C]//proceedings of the 2009 International Workshop on Location Based Social Networks, New York:ACM,2009:1-8.
  • 10LI Q,ZHENG Y,XIE X,et al.Mining user similarity based on location history[C]// Proceedings of the 16th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.New York:ACM,2008:1-10.

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部