期刊文献+

能量排序Prony算法在电力系统低频振荡参数辨识中的应用 被引量:3

Application of Energy-sorted Prony Algorithm in Parameter Identification of Low Frequency Oscillations for Power Systems
原文传递
导出
摘要 Prony算法是获取电力系统低频振荡参数的有效方法之一,但因算法系统阶数过高,既影响算法计算速度又可能导致模式误辨,进而影响振荡参数辨识的准确性。对此,将能量排序概念引入Prony算法,先介绍了Prony算法的原理及Prony算法参数的选取,而后根据能量大小对振荡模式进行排序,最后确定低频振荡主导模式,辨识低频振荡主导模式参数。算例分析表明,相较传统Prony算法,能量排序Prony算法有效降低了低频振荡模式的误辨率,提高了算法效率。 Prony algorithm is viewed as one of the most effective methods to get parameters of low frequency oscillation in power systems. The high system degree of the algorithm not only affects the computation speed, but also leads to the error of pattern recognition. Furthermore, it has impact on the accuracy of oscillation parameter identification. So, the concept of energy sorting is brought to Prony algorithm in this paper. The principle of Prony algorithm and the parameter selection of Prony algorithm are firstly introduced. According to the energy value, the oscillation mode is sorted. Finally, the dominant mode of low frequency oscillation is determined and the corresponding parameters are identified. Compared with the traditional Prony algorithm, example results show that the energy-sorted Prony algorithm can reduce the error recognition rate of low frequency oscillation and improve the algorithm's efficiency.
出处 《水电能源科学》 北大核心 2015年第9期192-195,共4页 Water Resources and Power
基金 天津市科技计划项目(13ZXCXGX35700) 航天技术应用产业产品孵化项目(JSKF201407290015) 海洋公益性行业科研专项经费项目(201405028)
关键词 能量排序 低频振荡 线性预测模型 PRONY算法 参数选取 energy sorting low frequency oscillation linear prediction model Prony algorithm parameters selection
  • 相关文献

参考文献5

  • 1K P Poon, K C Lee. Analysis of Transient Stability Swings in Large Interconnected Power Systems by Fourier Transformation[J]. Power Systems, IEEE Transactions on, 1988,3(4):1 573-1 581.
  • 2M Meunier, F Brouaye. Fourier Transform, Wave lets, Prony Analysis: Tools for Harmonics and Quality of Power[C]//Harmonics and Quality of Power Proceedings, 1998. Proceedings. 8th Interna tional Conference on. IEEE, 1998,1 : 71-76.
  • 3P Korba, M Larsson, C Rehtanz. Detection of Os- cillations in Power Systems Using Kalman Filtering Techniques[C]//Control Applications, 2003. CCA 2003. Proceedings of 2003 IEEE Conference on. IEEE, 2003,1:183-188.
  • 4J F Hauer, D J Trudnowski, J G DeSteese. A Per- spective on WAMS Analysis Tools for Tracking of Oscillatory Dynamics[C]//Power Engineering Socie ty General Meeting, 2007. IEEE. IEEE,2007 : 1-10.
  • 5杨玉坤,杨明玉.Prony算法在谐波、间谐波参数辨识中的应用[J].电力系统及其自动化学报,2012,24(3):121-126. 被引量:18

二级参考文献8

  • 1丁屹峰,程浩忠,吕干云,占勇,孙毅斌,陆融.基于Prony算法的谐波和间谐波频谱估计[J].电工技术学报,2005,20(10):94-97. 被引量:100
  • 2黄云江,谢维波.基于迭代Prony算法的高精度谐波检测[J].电气应用,2007,26(4):97-100. 被引量:5
  • 3Costa F F, Cardoso A J M. Harmonic and interhar- monic identification based on improved Prony's method[C]///32nd Annual Conference on IEEE Industrial Electronics, Paris, France: 2006.
  • 4Kamel N, Sankaran P, Venkatesh B. Fault-current predetermination using time-limited CT secondary side measurements by the covariance-Prony method [J]. IEE Proceedings: Generation, Transmission and Distribution, 2004,151(6) :735-739.
  • 5Demeure Cedric J, Scharf Louis L. Fast least squares solution of Vandermonde systems of equations[C]// IEEE International Conference on Acoustics, Speech and Signal Processing, Glasgow, Scotland: 1989.
  • 6Lee Joon-Ho, Kim Hyo-Tae. Selecting sampling in- terval of transient response for the improved Prony method [J]. IEEE Trans on Antennas and Propaga- tion, 2003,51(1) :74-77.
  • 7王治平,郑慧娆,张莉.Hankel矩阵类的一种快速分解算法[J].数学杂志,1998,0(S1):145-147. 被引量:2
  • 8杨洪耕,惠锦,侯鹏.电力系统谐波和间谐波检测方法综述[J].电力系统及其自动化学报,2010,22(2):65-69. 被引量:56

共引文献17

同被引文献24

引证文献3

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部