期刊文献+

基于图像块分类处理的快速单图超分辨率重建 被引量:1

Fast super-resolution for single image based on patch classification and processing
下载PDF
导出
摘要 基于稀疏编码的单幅图像超分辨率重建效果较好,但其计算量大、计算复杂,较低的超分速度阻碍了实时应用。为提高超分速度,提出一种基于图像块处理的快速超分辨率重建算法。先将特征提取后的图像块用均值和方差对分成3类,再分别运用不同的方法对图像块进行超分处理,如双三次插值(Bicubic)、邻域嵌入(NE)和稀疏编码超分法(SCSR)等。另外还运用主成分分析法(PCA)对图像块进行降维。实验中与经典的SCSR方法相比较,在获得几乎相同的PSNR值时,超分耗时减少了17.2 s。新方法的超分效果与经典的NE和SCSR方法处于同一水平,超分速度得到了较显著的提高。 The performance of single image super-resolution via sparse coding is promising. But the relatively low speed hinders its real-time application because of the large and complex computation. This paper presents a Proposed Sparse Coding Super-Resolution(PSCSR) algorithm to promote the super-resolution speed. The new method classifies the feature extracted image patches into three classifications with the finite pair of mean and variance. After that, it employs different methods to recover different classified patches, such as Bicubie, NE and SCSR. Additionally, it uses PCA to reduce the patch dimensionalities. In the experiments, the new method is 17.2 s faster than the classic SCSR while the PSNRs are nearly the same. The new method is faster than NE and SCSR with almost the same super-resolution performance.
出处 《电子技术应用》 北大核心 2015年第10期143-146,共4页 Application of Electronic Technique
基金 国家自然科学基金(61271256) 湖北省高等学校优秀中青年科技创新团队计划项目(T201513) 湖北省自然科学基金项目(2015CFB452) 湖北省教育厅科研计划指导性项目(B2015080)
关键词 超分辨率 图像块 稀疏编码 PCA super-resolution image patch sparse coding PCA
  • 相关文献

参考文献10

  • 1FREEMAN W T,PASZTOR E C, JONES T R,et al. Example-based super-resolution[J].IEEE Computer Graphics and Applications, 2002,22(2) : 56-65.
  • 2CHANG H,YEUNG D,XIONG Y M.Super-resolution through neighbor embedding[C].Proceedings of IEEE Conference on Computer Vision and Pattern Recognition Washington. D. C, USA : IEEE, 2004 : 275- 282.
  • 3GAO X ,ZHANG K,TAO D ,et al.Joint learning for single- image super-resolution via a coupled constraint[J].IEEE Transactions on Image Processing, 2012,21(2) : 469-480.
  • 4YANG J C,WRIGHT J,MA Y.Image super-resolution via sparse representation[J].IEEE Transactions on Image Procesing, 2010,19 ( 11 ) : 2861-2873.
  • 5YANG J C, WRIGHT J, HUANG T, et al.Coupled dictionary training for image super-resolution[J].IEEE Transactions on Image Processing, 2012,21(8) : 3467-3478.
  • 6ZEYDE R,ELAD M,PROTI"ER M.On single image scale- up using sparse- representations [ C ]. Proceedings of the 7th International Conference on Curves and Surfaces Avignon, France : Springer, 2010 : 1-20.
  • 7YANG J,LIN Z,COHEN S.Fast image super-resolution based on in-place example regression[C].Proceedings of the 2013 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. 2013 , Portland , 2013 : 1059- 1066.
  • 8练秋生,张伟.基于图像块分类稀疏表示的超分辨率重构算法[J].电子学报,2012,40(5):920-925. 被引量:52
  • 9Xie Qinlan ,Chen Hong ,Cao Huimin.Improved example- based single-image super-resolution[C].Image and Signal Processing(CISP), 2010,3 : 1204-1207.
  • 10潘宗序,禹晶,肖创柏,孙卫东.基于自适应多字典学习的单幅图像超分辨率算法[J].电子学报,2015,43(2):209-216. 被引量:25

二级参考文献18

  • 1韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 2H S Hou, H C Andrews. Cubic spline for image interpolation and digital filtering [J]. IEEE Transaction on Signal Pressing, 1978,26(6) :508 - 517.
  • 3S Mallet, Guoshen Yu. Super-Resolution with sparse mixing es- timators [ J]. IEEE Transactions on Image Processing, 2010, 19 ( 11 ) : 2889 - 2900.
  • 4W T Freeman, T R Jones, E C Pasztor. Example-based super- resolution [ J ]. IEEE Computer Graphics and Applications, 2002,22(2) :56 - 65.
  • 5M Elad, D Datsenko. Example-based regularization deployed to super-resolution reconstruction of a single image [ J ]. The Computer Journal, 2007,50(4) : 1 - 16.
  • 6Yang Jian-chao, J Wright, T S Huang, Yi Ma. Image super-res- olution via sparse representation [J]. 1EEE Transaction on Im-age Procesfing,2010,19(ll):2861 - 2873.
  • 7Yang Jian-chao, J Wright, T S Huang, Yi. Ma, Image super- resolution as sparse representation of raw image patches [ A]. Proceedings of the 1F, IEEE Conference on Computer Vision and Pattern Recognition[ C]. Anchorage, AK, 2008.1 - 8.
  • 8R Zeyde, M Elad, M Protter. On single image scale-up using sparse-representations [ A] .Proceedings of the 7th International Conference on Curves and Surfaces [ C ]. Avignon: Avignon, France, 2010.
  • 9M Aharon, M Elad, A Bruckstein, The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse represen- tation [ J 3. IEEE, Transaction on Signal Processing, 2006, 54 (11) :4311 - 4322.
  • 10R Rubinstein, M Zibulevsky,M Elad. Efficient implementation of the K-SVD algorithm using batch orthogonal matching pur- suit [ J/OL ]. http://www, cs. le, chnionac, il/N ronrubin/Publications/KSVD--OMP- v2. pdf, 2008-03-15.

共引文献75

同被引文献8

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部