期刊文献+

基于大数据技术的配电网抢修驻点优化方法 被引量:18

Optimization Method of Repair the Stagnation Point Distribution Based on Big Data Analysis Method
下载PDF
导出
摘要 配电网故障抢修是配电网运行的重要工作,科学高效的抢修管理和实施方法对提高配电网供电可靠性和配电网服务质量意义重大。提出了基于Hadoop处理技术的大数据解决方法处理配电网抢修驻点优化问题;全面分析了影响配电网抢修效率的各个因素;建立了配电网抢修驻点优化模型;引入了处理大数据的数据挖掘技术以提高模型分析的效率。此外,通过对配电网抢修点和抢修态进行综合分析与定位,对电网故障发生时间和故障位置的准确快速判断,实现合理有效调配抢修资源,从而提高配电网故障抢修工作的服务质量和效率。 Emergency repair is an important task in the operation of distribution network, for which the scientific and efficient management and implementation method is vital to improve reliability and service quality of distribution network. A method based on Hadoop analysis method is proposed to solve the optimization problem of distribution network emergency repair stagnation points. The factors that affect the efficiency of distribution network emergency repair is analyzed comprehensively, optimization model for emergency repair stagnation point is built up, and the data mining technique for processing big data is introduced to enhance the efficiency of model analysis. In addition, the reasonable and effective allocation of emergency repair resources is achieved by quick and accurate estimation of fault time and fault point and comprehensive analysis and location of distribution network emergency repair points and states, thus improving the serve quantity and efficiency of emergency repair.
出处 《供用电》 2015年第8期31-36,共6页 Distribution & Utilization
关键词 配电网 故障抢修 驻点优化 大数据 distribution network emergency repair stagnation point optimization big data
  • 相关文献

参考文献9

二级参考文献209

  • 1孙娜,吴立增,苑津莎,王琨.电力设备数据仓库的设计开发[J].电力系统通信,2005,26(9):50-53. 被引量:3
  • 2李先奇,曾致远,徐学军,杨琴.基于GIS的配电网停电管理系统研究与设计[J].电气应用,2006,25(1):44-47. 被引量:6
  • 3林峰,胡牧,蒋元晨,倪斌.电力调度综合数据平台体系结构及相关技术[J].电力系统自动化,2007,31(1):61-64. 被引量:87
  • 4王继业.电力企业数据中心建立及其对策[J].中国电力,2007,40(4):69-73. 被引量:22
  • 5Nature. Big Data [EB/OL]. [2012-10-02]. http,//www. nature, com/news/specials/bigdata/index, html.
  • 6Bryant R E, Katz R H, Lazowska E D. Big-Data computing : Creating revolutionary breakthroughs in commerce, science, and society [R]. [2012-10-02]. http:// www. cra. org/ccc/docs/init/Big_Data, pdf.
  • 7Science. Special online collection: Dealing with data [EB/OL]. [2012-10-02]. http://www, sciencemag, org/site/ special/data/, 2011.
  • 8Agrawal D, Bernstein P, Bertino E, et al. Challenges and opportunities with big data A community white paper developed by leading researchers across the United States [R/OL]. [2012-10-02]. http://cra, org/ccc/docs/init/bigdata whitepaper, pdf.
  • 9Manyika J, Chui M, Brown B, et al. Big data: The next frontier for innovation, competition, and productivity [R/OL]. [ 2012-10-02 ]. http://www, mekinsey, corn/ Insights]MGI[Research/Teehnology _ and _ Innovation]Big _ data The next frontier for innovation.
  • 10World Economic Forum. Big data, big impact: New possibilities for international development [R/OL]. [2012- 10-02]. http://www3, weforum, org/docs/WEF TC MFS BigDataBigImpact_Briefing 2012. pdf.

共引文献2630

同被引文献168

引证文献18

二级引证文献177

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部