期刊文献+

求解广义Rosenau-Kawahara方程的一个守恒差分格式 被引量:3

A conservation difference scheme for generalized Rosenau-Kawahara equation
下载PDF
导出
摘要 对一类广义Rosenau-Kawahara方程的初边值问题进行数值研究,提出了一个两层非线性有限差分格式,合理模拟了问题的两个守恒性质,得到了差分解的先验估计和存在唯一性;利用能量方法分析了差分格式的二阶收敛性与无条件稳定性;最后,利用数值算例验证了差分格式的有效性. The numerical solution of the initial‐boundary value problem for generalized Rosenau‐Kawahara equation is considered , and a nonlinear two‐level finite difference scheme is designed . The difference schemes simulate two conservative quantities of the problem well . The prior estimate , existence and uniqueness of the finite difference solution are also obtained . It is show n that the finite difference scheme is second‐order convergence and unconditionally stable by discrete functional analysis method . Numerical experiments verify the theoretical results .
作者 陈涛 胡劲松
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2015年第5期18-21,26,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(11171239) 西华大学研究生创新基金资助课题(ycjj2014033)
关键词 广义Rosenau-Kawahara方程 有限差分格式 守恒性 收敛性 稳定性 generalized Rosenau-Kaw ahara equation finite difference scheme conservation convergence stability
  • 相关文献

参考文献10

  • 1ZUO J. Solitons and periodic solutions for the Rosenau KdV and Rosenau-Kawahara Equations[J].Applied Mathematics and Computation, 2009, 215(2): 835.
  • 2LABIDI M, BISWAS A. Application of He's principles to Rosenau-Kawahara equation E J 1. Mathematics in Engineering, Science and Aerospace, 2009, 2(2):183.
  • 3BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenau? Kawahara equation with power law nonlinearity[J]. Physics of Wave Phenomena, 2011, 19(1): 24.
  • 4HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation [J]. Advances in Mathematical Physics, 2014 (2014), Article ID 217393, 11 pages.
  • 5王廷春,张鲁明.求解广义正则长波方程的守恒差分格式[J].应用数学学报,2006,29(6):1091-1098. 被引量:14
  • 6WANG T, GUO B, ZHANG L. New conservative difference schemes for a coupled nonlinear Schr6dinger system [J]. Applied Mathematics and Computation, 2010, 217(4) :1604.
  • 7HU J, ZHENG K. Two conservative difference schemes for the generalized Rosenau equation [J].Boundary Value Problems, 2010(2010), Article ID 543503, 18 pages.
  • 8PAN X, ZHANG L. On the convergence of a conservative numerical scheme for the usual Rosenau RLW equation [J]. Applied Mathematical Modelling, 2012, 36(8): 3371.
  • 9BROWDER F E. Existence and uniqueness theorems for solutions of nonlinear boundary value Problems [ J ]. Proceedings of Symposia in Applied Mathematics, 1965, 17: 24.
  • 10ZHOU Yu-lin. Application of Discrete Functional Analysis to the Finite Difference Methods [M]. Beijing: International Academic Publishers, 1990.

二级参考文献20

  • 1Wang T C,Chen J,Zhang L.Conservative Difference Methods for the Klein-Gordon-Zakharov Equations.J.Comput.Appl.Math.,2006,in press
  • 2Li S,Vu-quoc.Finite Difference Calculas Invariant Structure of a Class of Algorithms for the Nonlinear Klein-Gordon Equation.SIAM.Numer.Anal.,1995,32:1839-1864
  • 3Zhang L.A Finite Difference Scheme for Generalized Regularized Long-wave Equation.Appl.Math.Comput.,2005,28(2):962-972
  • 4Zhou Y.Application of Discrete Functional Analysis to the Finite Difference Method.Beijing:Inter.Acad.Publishers,1990
  • 5Akrivis G D.Finite Difference Discretization of the Cubic Schrodinger Equation.IMA J.Nume.Anal.,1993,13:115-124
  • 6Zhang L,Chang Q.A New Finite Difference Method for Regularized Long-wave Equation.Chinese J.Numer.Math.Appl.,2001,23:58-66
  • 7Zhang F,Perez-Ggarcia V M,Vazquez L.Numerical Simulation of Nonlinear Schrodinger Systems:a New Conservative Scheme.Appl.Math.Comput.,1995,71:165-177
  • 8Zhang F,Vazquez L.Two Energy Conservative Schemes for the Sine-Gordon Equation.Appl.Math.Comput.,1991,45:17-30
  • 9Zhang F,Vazquez L.Some Conservative Numerical Schemes for an Ordinary Differential Equation.Comput.Appl.Math.,1991:1-13
  • 10Chang Q,Wang G,Gong B.Conserving Scheme for a Model of Nonlinear Dispersive Waves and Its Solitary Waves Induced By Boundary Notion.J.Conput.Phys.,1991,93:360-375

共引文献13

同被引文献23

  • 1[ ROSENAU P. A quasi-eontinuous description of a nonlinear transmission line[J]. Physica Scripta,1986,34(6B) :827 -829.
  • 2ROSENAU P. Dynamics of dense discrete systems:high order effects: general and mathematieal Physics[ J ]. Progress of Theoretical Physics,1988(79) :1028 - 1042.
  • 3ZUO J M. Solitons and periodic solutions for the Rosenau-KdV and Rosenau-Kawahara equations [ J ]. Applied Mathematics and Computation,2009,215 ( 2 ) : 835 - 840.
  • 4BISWAS A, TRIKI H, LABIDI M. Bright and dark solitons of the Rosenau-Kawahara equation with power law nonlinearity [ J ]. Physics of Wave Phenomena,2011,19 ( 1 ) :24 - 29.
  • 5HU J, XU Y, HU B, et al. Two conservative difference schemes for Rosenau-Kawahara equation. Advances in Mathematical Physics, 2014,10( 1 ) :396 - 409.
  • 6ZHOU Y. Application of discrete functional analysis to the finite difference method [ M ]. Beijing: International Academic Publishers, 1991.
  • 7Rosenau P . A Quasi - continuous Description of a Nonlinear Transmission Line[J] . Physical Scripta, 1986,34:827.
  • 8Rosenau P. Dynamics of Dense Discrete Systems [J] . Progress of Theoretical Physics, 1988,79: 1028.
  • 9Park M A . On the Rosenau Equation [J] . Applied Mathematics and Computation ,1990 ,9 (2 ) :145.
  • 10Cui yanfen, Mao De - kang. Numerical Method Satisfying the First Two Conservation Laws for the Korteweg - de Vries Equation [Journal of Computational Physics ,2 0 0 7 ,227( 1) : 376.

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部