摘要
对一类广义Rosenau-Kawahara方程的初边值问题进行数值研究,提出了一个两层非线性有限差分格式,合理模拟了问题的两个守恒性质,得到了差分解的先验估计和存在唯一性;利用能量方法分析了差分格式的二阶收敛性与无条件稳定性;最后,利用数值算例验证了差分格式的有效性.
The numerical solution of the initial‐boundary value problem for generalized Rosenau‐Kawahara equation is considered , and a nonlinear two‐level finite difference scheme is designed . The difference schemes simulate two conservative quantities of the problem well . The prior estimate , existence and uniqueness of the finite difference solution are also obtained . It is show n that the finite difference scheme is second‐order convergence and unconditionally stable by discrete functional analysis method . Numerical experiments verify the theoretical results .
出处
《西北师范大学学报(自然科学版)》
CAS
北大核心
2015年第5期18-21,26,共5页
Journal of Northwest Normal University(Natural Science)
基金
国家自然科学基金资助项目(11171239)
西华大学研究生创新基金资助课题(ycjj2014033)