期刊文献+

基于集成学习和分层结构的多分类算法 被引量:9

Multi-class Classification Algorithm Based on Ensemble Learning and Hierarchical Structure
下载PDF
导出
摘要 分类是数据挖掘、模式识别等领域的重要研究内容.文中提出基于集成学习和分层结构的多分类算法.首先依据问题的类别层分解问题,定义层次分类器的分层结构,然后在分层结构的基础上通过集成学习方法集成多个弱分类器以构成分类过程.在CCDM 2014数据挖掘竞赛中,文中算法在平均精度和F1-score等多项指标上均取得最高成绩,证明该算法在分类问题上的可行性. The classification algorithm is an important research field in data mining and pattern recognition. A multi-class classification algorithm based on ensemble learning and hierarchical structure is proposed. Firstly, the problems are decomposed according to their hierarchy categories. The hierarchical structure of the hierarchical classifier is defined. Then, multiple weak classifiers are integrated by ensemble learning methods based on the hierarchical structure. Thus, the classification process is completed. In the data mining competition of CCDM 2014 , the proposed algorithm achieves the highest performance on several indexes, including average accuracy and F1-score. The results verify the feasibility on the classification problem.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2015年第9期781-787,共7页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金项目(No.61370010 61102136) 国家社会科学基金项目(No.13&ZD148) 福建省自然科学基金项目(No.2014J01253) 深圳市科技创新基础研究项目(No.JCYJ20120618155655087)资助
关键词 多分类 集成学习 层次分类器 Multi-class Classification Ensemble Learning Hierarchical Classifier
  • 相关文献

参考文献19

  • 1Cortes C, Vapnik V. Support-Vector Networks. Machine Learning, 1995, 20(3) : 273-297.
  • 2Safavian S R, Landgrebe D. A Survey of Decision Tree Classifier Methodology. IEEE Trans on Systems, Man, and Cybernetics, 1991, 21(3) : 660-674.
  • 3Caruana R, Niculescu-Mizil A, Crew G, et al. Ensemble Selection from Libraries of Models//Proe of the 21 st International Conference on Machine Learning. Banff, Canada, 2004:137-144.
  • 4Zhou Z H, Wu J X, Tang W. Ensembling Neural Networks: Many Could Be Better Than All. Artificial Intelligence, 2002, 137 ( 1/ 2) : 239-263.
  • 5张春霞,张讲社.选择性集成学习算法综述[J].计算机学报,2011,34(8):1399-1410. 被引量:139
  • 6Breiman L. Bagging Predictors. Machine Learning, 1996, 24 ( 2 ) 123-140.
  • 7Freund Y, Schapire R E. A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting. Journal of Com-puter and System Sciences, 1997, 55 ( 1 ) : 119-139.
  • 8Kearns M J, Valiant L G. Learning Boolean Formulae or Finite Au- tomata is as Hard as Factoring. Technical Report, TR-14-88. Cam- bridge, USA: Harvard University, 1988.
  • 9Breiman L. Random Forests. Machine Learning, 2001,45( 1 ) : 5- 32.
  • 10Friedman J H. Stochastic Gradient Boosting. Computational Statis- tics & Data Analysis, 2002, 38(4) : 367-378.

二级参考文献78

  • 1王丽丽,苏德富.基于群体智能的选择性决策树分类器集成[J].计算机技术与发展,2006,16(12):55-57. 被引量:3
  • 2Thompson S. Pruning boosted classifiers with a real valued genetic algorithm. Knowledge-Based Systems, 1999, 12(5-6): 277-284.
  • 3Zhou Z H, Tang W. Selective ensemble of decision trees// Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. Chongqing, China, 2003:476-483.
  • 4Hernandez-Lobato D, Hernandez-Lobato J M, Ruiz-Torrubiano R, Valle A. Pruning adaptive boosting ensembles by means of a genetic algorithm//Corchado et al. International Conference on Intelligent Data Engineering and Automated Learning. Berlin Heidelberg: Springer-Verlag, 2006: 322- 329.
  • 5Zhang Y, Burer S, Street W N. Ensemble pruning via semidefinite programming. Journal of Machine Learning Research, 2006, 7: 1315-1338.
  • 6Chen H H, Tino P, Yao X. Predictive ensemble pruning by expectation propagation. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(7): 999-1013.
  • 7Dos Santos E M, Sahourin R, Maupin P. Overfitting cautious selection of classifier ensembles with genetic algorithms. Information Fusion, 2009, 10(2): 150-162.
  • 8Li N, Zhou Z H. Selective ensemble under regularization framework//Benediksson J A, Kittler J, Roll F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:293-303.
  • 9Reid S, Grudic G. Regularized linear models in stacked generalization//Benediksson J A, Kittler J, Roli F. Multiple Classifier Systems. Berlin Heidelberg: Springer-Verlag, 2009:112-121.
  • 10Zhang L, Zhou W D. Sparse ensembles using weighted combination methods based on linear programming. Pattern Recognition, 2011, 44(1): 97-106.

共引文献138

同被引文献99

引证文献9

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部