期刊文献+

基于曲线波和独立成分分析的人脸识别

Face Recognition Based on Curvelet Transform and Independent Component Analysis
下载PDF
导出
摘要 针对曲线特征更能反映人脸图像的主要特征和独立成分分析能够提取高阶信息的优势,提出了一种基于曲波变换与独立成分分析的人脸识别方法.首先将人脸图像进行曲波变换,选择粗尺度层系数作为曲波特征,然后对曲波特征下采样后进行独立成分分析,提取部分独立成分构成特征空间,最后根据最近邻分类器分类.在0RL和Yale人脸库上的相关实验表明:该方法在识别性能方面优于对比方法. As the main features of the faces can be better represented by the curvelet coefficients, and higher-order feature can be extracted by independent component analysis, a method of face recognition based on curvelet transform and ICA is proposed in this paper. Firstly, each of the images is decomposed using curvelet trasnform, and the low-frequency face image is selected as a sub-image;secondly,ICA is adopted to obtain independent components, and part of independent components are selected to constitute the feature space. Finally, the nearest neighbor classifier is used for identification. The experiment result on ORL and Yale face databases shows that the proposed method improved the recognition performance in comparison with comparative approach.
作者 刘嵩 王春宁
出处 《湖北民族学院学报(自然科学版)》 CAS 2015年第3期300-303,共4页 Journal of Hubei Minzu University(Natural Science Edition)
基金 湖北省自然科学基金项目(2013CFB042)
关键词 人脸识别 曲波变换 独立成分分析 特征提取 最近邻分类器 face recognition curvelet transform independent component analysis feature extract the nearest neighbor classifier
  • 相关文献

参考文献14

  • 1郭黎,冷洁,梅文兰,孔祥聪,廖宇,廖红华.基于PCA和SVM的人脸识别技术研究[J].湖北民族学院学报(自然科学版),2015,33(2):193-196. 被引量:7
  • 2刘悦婷.基于小波树和二维主元分析的人脸识别[J].佳木斯大学学报(自然科学版),2015,33(1):109-112. 被引量:1
  • 3BELHUMENU P N, HESPANHA J P, KRIEGMAN D J. Eigenfaces vs fisherfaces : Recognition using class specific linear projection [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) :711-720.
  • 4BARTLETY M S, LADES H M.Independent component representation for face recognition [ J ].Proc of SPIE, 1998 : 528-539.
  • 5CHIEN J, WU C.Discriminant wavelet faces and nearest feature classifiers for face Recognition [ J ]. IEEE Trans on Pattern Analysis and Machine In- telligence, 2002,24 ( 12 ) : 1644-1649.
  • 6CANDES, E J, DONOHO D L.Fast discrete curvelet transforms [ J ]. Multiscale Modeling and Simulation, 2006,5 ( 3 ) : 861 - 899.
  • 7WU XIAN-XING,ZHAO JIE-YU.Curvelet feature extraction for face recognition and facial expression recognition[ C ]//2010 Sixth International Conference on Natural Computation, Yantai, Shandong, China, August 10-12,2010 : 1212-1216.
  • 8ZHANG, LI PENG.Facial feature extraction by curvelet and LDA [ J] .Journal of Computational Information Systems,2008,5 (3) :1333-1339.
  • 9张新征.基于多小波子带加权判别熵的SAR目标ICA特征提取及识别[J].计算机应用,2011,31(9):2468-2472. 被引量:3
  • 10ANTONI J, CHAUHAN S.A study and extension of second-order blind source separation to operational modal analysis [ J ] .Journal of Sound and Vibration, 2013,332 (4) : 1079-1106.

二级参考文献43

  • 1尹克重,龚卫国,李伟红,梁毅雄.基于小波变换和ICA的人脸识别方法[J].仪器仪表学报,2005,26(z2):412-415. 被引量:10
  • 2张会森,王映辉.人脸识别技术[J].计算机工程与设计,2006,27(11):1923-1928. 被引量:18
  • 3王军选,尧文元,廖汉程.多径衰落下基于多码检测的多天线CDMA信道容量分析[J].北京邮电大学学报,2006,29(3):99-102. 被引量:2
  • 4何贵青,郝重阳,王毅,田沄,樊养余.基于灰色关联分析和IHS变换的图像融合算法[J].计算机应用研究,2007,24(7):312-314. 被引量:9
  • 5A. Cichocki and S I Amari. "Adaptive Blind Signal and Image Processing". New York : Wiley, 2002.
  • 6P Comon. "Independent Component Analysis, A new concept?". Signal Processing, vol. 36, no. 3, pp. 287-314, 1994.
  • 7J F Cardoso and B H Laheld. "Equivariant adaptive source separation". IEEE Transactions on Signal Processing, vol. 44, no. 12, pp. 3017-3030, 1996.
  • 8A. Hyvarinen and E. Oja. "A Fast Fixed-point Algorithm for Independent Component Analysis". Neural Computation, vol. 9, no. 7, pp. 1483-1492, 1997.
  • 9E. Bingham and A. Hyvarinen. "A Fast Fixed-point Algorithm for Independent Component Analysis of Complex Valued Signals". Journal of Neural Systems, vol. 10, no.1, pp. 1-8, 2000.
  • 10P. Tichavsky, Z. Koldovsky and E. Oja. "Performance Analysis of the FastlCA Algorithm and Cramrr-Rao Bounds for Linear Independent Component Analysis". IEEE Transactions on Signal Processing, vol. 54, no. 4, pp. 1189- 1203, 2006.

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部