期刊文献+

基于谱聚类的蛋白质对接复合物最佳预测结构的挑选方法 被引量:4

Selecting the Best of the Predictions of Compound Structures for Protein Docking by Spectral Clustering
下载PDF
导出
摘要 蛋白质结构预测过程中常会生成大量候选结构,需从中挑选出最佳预测结构.聚类是一种常见的挑选方法,根据候选结构间的相似度将其划分成不同的类别.与传统聚类算法不同,谱聚类算法可以收敛于全局最优解.它的核心思想是"先降维,再聚类",对包含大量信息的蛋白质结构非常适合.与单体结构挑选、loop结构挑选等相比,对接复合物的挑选更加复杂.因而,本文以蛋白质对接复合物为研究对象,提出一种基于谱聚类的对接复合物最佳预测结构的挑选方法.选取十组数据集进行实验,将本文的方法与能量打分、基于近邻传播算法的方法作比较.实验结果表明,谱聚类算法在对接复合物结构挑选方面可以取得很好的效果. As large quantifies of decoys generated during protein structure predictionv selecting the best prediction is an essential step. Clustering is a common way to select decoys, it obtains the partition of the dataset based on the similarities between the decoys. Different from the traditional clustering algorithms, spectral clustering can be converged to global optimal solution. The main idea of spectral clustering algorithm is the "dimension reduction first, and then cluster". So ,it's quite suitable for protein structures with large amounts of information. Compared with selecting monomer structures and loop structures selecting the compound structures of protein is more complicated. This paper proposes a method for selecting the best prediction of the compound structures of protein docking by spectral clustering and chooses the compound structures as the object of the research. Evaluation is conducted by comparing this method to energy scoring and the method based on affinity propagation upon ten cases. The experimental results indicate that spectral clustering is able to pick out representative structures.
出处 《小型微型计算机系统》 CSCD 北大核心 2015年第10期2365-2368,共4页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(61170125)资助
关键词 谱聚类 结构挑选 能量打分 对接复合物 spectral clustering structure selection energy scoring compound structures
  • 相关文献

参考文献5

二级参考文献43

  • 1倪巍伟,孙志挥,陆介平.k-LDCHD——高维空间k邻域局部密度聚类算法[J].计算机研究与发展,2005,42(5):784-791. 被引量:18
  • 2刘远超,王晓龙,刘秉权.一种改进的k-means文档聚类初值选择算法[J].高技术通讯,2006,16(1):11-15. 被引量:23
  • 3张昕,彭宏,郑启伦.基于微粒群算法的聚类分析[J].微电子学与计算机,2006,23(9):94-95. 被引量:6
  • 4高尚,汤可宗,杨静宇.一种新的基于混合蚁群算法的聚类方法[J].微电子学与计算机,2006,23(12):38-40. 被引量:17
  • 5Tsai C Y,Chin C C.Developing a feature weight selfadjustment mechanism for a K-means clustering algorithm.Computational Statistics and Data Analysis,2008,52(10):4658-4672
  • 6Qu J,Jiang Q S,Weng F F,Hong Z L.A hierarchical clustering based on overlap similarity measure.In:Proceedings of the 8th ACIS International Conference on Software Engineering,Artificial Intelligence,Networking,and Parallel/Distributed Computing.Qingdao,China:IEEE,2007.905-910
  • 7Kohonen T,Kaski S,Lagus K,Salojarvi J,Honkela J,Paatero V.Self organization of a massive document collection.IEEE Transactions on Neural Networks,2000,11(3):574-585
  • 8Arthur H,Saman K H.Class structure visualization with semi-supervised growing self-organizing maps.Neurocomparing,2008,71(16-18):3124-3130
  • 9Chan A,Pampalk E.Growing hierarchical self organising map (GHSOM) toolbox:visualisations and enhancements.In:Proceedings of the 9th International Conference on Neural Information Processing.Singapore,Singapore:IEEE,2002.2537-2541
  • 10Tien D D,Sin C H,Alvis C M F.Associative feature selection for text mining.International Journal of Information Technology,2006,12(4):59-68

共引文献186

同被引文献23

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部