期刊文献+

结合并行融合的序列化多模态生物特征识别系统框架 被引量:3

Framework of serial multimodal biometrics with parallel fusion
下载PDF
导出
摘要 针对多模态生物特征识别系统并行融合模式中使用方便性和使用效率方面的问题,在现有序列化多模态生物特征识别系统的基础上,提出了一种结合并行融合和序列化融合的多生物特征识别系统框架。框架中首先采用步态、人脸与指纹三种生物特征的不同组合方式以加权相加的得分级融合算法进行的识别过程;其次,利用在线的半监督学习技术提高弱特征的识别性能,从而进一步增强系统的使用方便性和识别可靠性。理论分析和实验结果表明,在此框架下,随使用时间的推移,系统能够通过在线学习提高弱分类器的性能,用户的使用方便性和系统的识别精度都得到了进一步提升。 In the multimodal biometric system, the parallel fusion mode has more advantages than the serial fusion mode in convenience and efficiency. Based on current works on serial multimodal biometric system, a framework combined with parallel fusion mode and serial fusion mode was proposed. In the framework, the weighted score level fusion algorithm using biological features of gait, face and finger was proposed at first; then semi-supervised learning techniques were used to improve the performance of weak traits in the system, and the simultaneous upgrade of user convenience and recognition accuracy was achieved. Analysis and experimental result indicate that the performance of the weak classifier can be improved by online learning, the convenience and recognition accuracy are successfully promoted in this framework.
作者 李海霞 张擎
出处 《计算机应用》 CSCD 北大核心 2015年第10期2789-2792,2823,共5页 journal of Computer Applications
基金 国家自然科学基金资助项目(61173069) 山东省高校证据鉴识重点实验室(山东政法学院)开放课题资助项目(KFKT(SUPL)-201409)
关键词 多模态生物特征识别 序列化集成 并行集成 使用方便性 半监督学习 multimodal biometric serial fusion parallel fusion user convenience semi-supervised learning
  • 相关文献

参考文献14

  • 1SATHEESAN S P, TULYAKOV S, GOVINDARAJU V. A feature information based approaeh for enhancing score-level fusion in multi- sample biometrie systems[ C]// Proceedings of the Fourth National Conference on Computer Vision, Pattern Recognition, Image Pro- eessing and Graphics. Piscataway: IEEE Press, 2013:1 -4.
  • 2KIMURA T, MAKIHARA Y, MURAMATSU D, et aL Quality-de- pendent score-level fusion of face, gait, and the height biometrics [ J]. Information and Media Technologies, 2014, 9(3) : 346 -350.
  • 3LU L, PENG J. Finger muhi-biometric cryptosystem using feature- level fusion[ J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2014, 7(3): 223 -236.
  • 4VIJAYALAKSHMI V, DIVYA R, JAGANATH K. Finger and palm print based multibiometric authentication system with GUI interface [ C] // Proceedings of the 2013 International Conference on Commu- nications and Signal Processing. Piscataway: IEEE Press, 2013: 738 - 742.
  • 5MARCIALIS G L, ROLl F. Serial fusion of fingerprint and face matchers[ C]// MCS 2007: Proceedings of the 7th International Workshop on Multiple Classifier Systems, LNCS 4472. Berlin: Springer-Verlag, 2007:151 - 160.
  • 6MARCIALIS G L, ROLl F, DIDACI L. Personal identity verifica- tion by serial fusion of fingerprint and face marchers [ J]. Pattern Recognition, 2009, 42(11): 2807-2817.
  • 7MARCIALIS G L, MASTINU P, ROLl F. Serial fusion of multi-mo- dal biometrie systems[ C[// Proceedings of the 2010 IEEE Work- shop on Biometrie Measurements and Systems for Security and Medi- cal Applications. Piscataway: IEEE Press, 2010:1-7.
  • 8ZHOU X, BHANU B, HAN J. Human recognition at a distance in video by integrating face profile and gait[ M]// HAMMOUD R I, ABIDI B R, ABIDI M A. Face Biometrics for Personal Identifica- tion. Berlin: Springer-Verlag, 2007:165-181.
  • 9ZHANG Q, YIN Y, ZHAN D, et al. A novel serial multimodal bio- metrics framework based on semi-supervised learning techniques [J]. IEEE Transactions on Information Forensics and Security, 2014, 9(10) : 1681 - 1694.
  • 10ULUDAG U, MINK A, INDOVINA M, et al. Large-scale evalua- tion of muhimodal biometric authentication using state-of-the-art systems [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 450-455.

同被引文献26

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部