期刊文献+

道路交通事故的非线性偏最小二乘回归建模 被引量:5

Road traffic accident regression modeling based on nonlinear partial least squares method
原文传递
导出
摘要 就有效预防交通事故、提高道路交通效率而言,借助高精度的道路交通事故预测模型,准确分析事故原因是重要的基础性工作。首先基于偏相关分析方法,对影响事故起数、死亡人数和受伤人数这3个事故指标的11个因素进行相关性分析,确定最相关的影响因素及其线性相关性;然后利用偏最小二乘回归方法,对事故指标与影响因素之间的线性关系进行建模;进而基于非线性偏最小二乘回归方法,建立两者之间的非线性关系模型。通过对回归模型的精度分析,用偏最小二乘回归方法仅能对事故指标与影响因素之间线性关系准确建模,测定系数最大为0.98,相对误差最大为21.77%。用非线性偏最小二乘回归方法,对事故指标与影响因素之间的线性和非线性关系均能准确建模,测定系数最大为1.相对误差最大为4.23%。 For preventing road traffic accidents and improving the road traffic efficiency, accurate cause analysis of road traffic accident is important basic work according to a high-accuracy traffic accident model. Firstly, the most relevant factors and the linear correlations between influence factors and the traffic accident indexes are determined, after correlation analysis of 11 influence factors with 3 accident indexes, which are the number of accidents, death toll and the number of injured people, based on the partial correlation analysis method. Then, the linear relationship between each of the accident indexes and the influence factors is established based on the partial least squares regression method. And further, the nonlinear relationship between each of the accident indexes and the influence factors is established based on the nonlinear partial least squares regression method. By regressive accuracy verifying, the partial least squares regression method can be used only to model accurately the linear relationship between the influence factors and the accident index, the maximum determination coefficient is 0.98 and the maximum relative error is 21.77%. The nonlinear partial least squares regression method can be used to model the linear and the nonlinear relationships between them, the maximum determination coefficient is 1 and the maximum relative error is 4.23%.
出处 《中国安全科学学报》 CAS CSCD 北大核心 2015年第7期41-47,共7页 China Safety Science Journal
基金 国家自然科学基金资助(11272067) 湖南省自然科学基金资助(2015JJ2002) 工程车辆轻量化与可靠性技术湖南省高校重点实验室(长沙理工大学)开放基金资助(2012KFJJ09)
关键词 道路交通 影响因素 事故指标 非线性偏最小二乘 回归建模 road traffic influence factor accident index nonlinear partial least squares regression model
  • 相关文献

参考文献12

二级参考文献64

共引文献135

同被引文献33

  • 1王生昌,白韶波,张慧.公路客运量预测方法的比较[J].长安大学学报(自然科学版),2005,25(5):83-85. 被引量:34
  • 2BALAGH A K G, NADERKHANI F, MAKIS V. Highway accident modeling and forecasting in winter[J].Transportation Research Part A: Policy and Practice, 2014,59:384-396.
  • 3MONFARED A B,SOORI H,MEHRABI Y,et al. Prediction of fatal road traffic crashes in Iran using the box-jenkins time series model[J].Joumal of Asian Scientific Research,2013,3(4):425-430.
  • 4COMMANDEUR J J F, BIJLEVELD F D, BERGEL-HAYAT R, et al. On statistical inference in time series analysis of the evolution of road safety[J].Accident Analysis & Prevention,2013,60:424-434.
  • 5Michael E TIPPING. Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1:211-244.
  • 6CAESARENDRA W,WlDODO A,YANG B S. Application of relevance vector machine and logistic regression for machine degradation assessment[J].Mechanical Systems and Signal Processing,2010,24(4):l 161-1 171.
  • 7WEI L,YANG Y,NISHIKAWA R M, et al. Relevance vector machine for automatic detection of clustered microcalcifications[J].IEEE Transactions on Medical Imaging,2005,24(10): 1 278-1 285.
  • 8FLAKE J, MOON T K, MCKEE M, et al. Application of the relevance vector machine to canal flow prediction in the Sevier River Basin[J].Agricultural Water Management,2007,97(2):208-214.
  • 9田智慧,王世杰.基于四阶段预测理论的公路交通量预测研究[J].郑州大学学报(工学版),2008,29(3):133-136. 被引量:15
  • 10王东,熊锡龙.基于影响因素分析的船舶交通流量预测多元线性回归模型[J].船海工程,2010,39(3):178-180. 被引量:10

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部