期刊文献+

Dijkstra算法和Bellman-Ford算法生成印尼文本摘要的比较

Algorithms Comparison Between Dijkstra and Bellman-Ford for Generating Indonesian Document Summarization
下载PDF
导出
摘要 是一种基于计算机的系统,它概括文本的同时保留文章的主题。在获取摘要过程中,用句子间的权重给每个段落建立句子的图谱;同时也考虑印尼文章段落结构的归纳演绎方法,用最短路径算法确定哪些句子部分将成为摘要的结果。实验结果表明,Dijkstra算法优于Bellman-Ford算法生成文本摘要压缩率的12%。 Automated Text Summarization is a computer-based system to perform text summarization that still keeps the main subject of the article. In the summarization process, we use weight of sentence, and build a graph of sentences in every paragraph. We also consider the inductive-deductive method in paragraph structure in Indonesian articles. We use shortest part algorithm to determine which sentences will become results of summarization. In this paper, we will compare the results of summarization with Dijkstra and bellman-ford algorithms. The experimental result shows that Dijkstra give the better compression rate by 12%.
作者 杨泳
机构地区 江西警察学院
出处 《科技广场》 2015年第7期16-20,共5页 Science Mosaic
关键词 自动摘要 最短路径算法 DIJKSTRA Bellman-Ford 术语权重 Automatic Summarization Shortest Path Algorithm Dijkstra Bellman-Ford Term Weighting
  • 相关文献

参考文献18

  • 1SankarK.,L.Sobha.An approach to text sum- marization [A]. Proceedings of the Third Intemational Workshop on Cross Lingual Information Access:Ad- dressing the Information Need of Multilingual Soci-eties [C]. Association for Computational Linguistics, 2009.
  • 2Hovy,Eduard, Chin-Yew Lin.Automated text summarization and the SUMMARIST system [A].Pro- ceedings of a workshop on held at Baltimore,Mary- land [C]. Association for Computational Linguistics, 1998.
  • 3Nero, Joel Larocca, Alex A.Freitas, et al.Auto- matic text summarization using a machine learning ap- proach [M].Advances in Artificial Intelligence. Springer Berlin Heidelberg, 2002.
  • 4Gholamrezazadeh, Saeedeh, Mohsen Amini Salehi, et al [A].A comprehensive survey on text summarization systems[C].Proceedings of CSA, 2009.
  • 5Jing,Hongyan.Sentence reduction for automat ic text summarization[A].Proceedings of the sixth con- ference on Applied natural language processing. Asso- ciation for Computational Linguistics, 2000.
  • 6Barzilay, Regina, Michael Elhadad.Using lexi- cal chains for text summarization[M].Advances in au- tomatic text summarization, 1999.
  • 7Chuang,Wesley T.,Jihoon Yang.Extracting sentence segments for text summarization:a machine learning approach [A]. Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval. ACM, 2000.
  • 8Aristoteles, Herdiyeni Y., Abroad Ridha, et al. Text Feature Weighting for Summarization of Docu- ments in Bahasa Indonesia Using Genetic Algoritm[J]. International Journal of Science Issues.ISSN, 2012.
  • 9Nandhini, K., S.R.Balasundaram.Improving r- eadability through extractive summarization for learn- ers with reading difficulties [J].Egyptian Informatics Journal,2013,14(03 ) : 95-204.
  • 10Aliguliyev,R. M.Automatic document sum- marization by sentence extraction[J].Computer Appli- cations Journal, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部