期刊文献+

Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number 被引量:15

Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number
原文传递
导出
摘要 This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow.The water tunnel model tests further validate the accuracy and effectiveness of the numerical method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses(12%, 14%, 16%, 18%), as well as different locations of the maximum relative thickness(x/c = 22%, 26%, 30%, 34%), at a low Reynolds number of 5 × 10^5.Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble.On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance.The numerical method is feasible for the simulation of low Reynolds number flow.The study can help to provide a basis for the design of low Reynolds number airfoil. This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles(HAUAVs) cruising at low speed.Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow.The water tunnel model tests further validate the accuracy and effectiveness of the numerical method.Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses(12%, 14%, 16%, 18%), as well as different locations of the maximum relative thickness(x/c = 22%, 26%, 30%, 34%), at a low Reynolds number of 5 × 10^5.Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble.On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance.The numerical method is feasible for the simulation of low Reynolds number flow.The study can help to provide a basis for the design of low Reynolds number airfoil.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2015年第4期1003-1015,共13页 中国航空学报(英文版)
关键词 Aerodynamic characteristicsAirfoil Laminar separation Low Reynolds number Numerical simulation Relative thickness Water tunnel model tests Aerodynamic characteristicsAirfoil Laminar separation Low Reynolds number Numerical simulation Relative thickness Water tunnel model tests
  • 相关文献

参考文献4

二级参考文献41

共引文献58

同被引文献135

引证文献15

二级引证文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部