期刊文献+

AN APPLICABLE APPROXIMATION METHOD AND ITS APPLICATION

AN APPLICABLE APPROXIMATION METHOD AND ITS APPLICATION
下载PDF
导出
摘要 In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method. In this work, by choosing an orthonormal basis for the Hilbert space L^2[0, 1], an approximation method for finding approximate solutions of the equation (I + K)x = y is proposed, called Haar wavelet approximation method (HWAM). To prove the applicabifity of the HWAM, a more general applicability theorem on an approximation method (AM) for an operator equation Ax = y is proved first. As an application, applicability of the HWAM is obtained. Fhrthermore, four steps to use the HWAM are listed and three numerical examples are given in order to illustrate the effectiveness of the method.
出处 《Acta Mathematica Scientia》 SCIE CSCD 2015年第5期1189-1202,共14页 数学物理学报(B辑英文版)
基金 support by the NSFC(11371012,11401359,11471200) the FRF for the Central Universities(GK201301007) the NSRP of Shaanxi Province(2014JQ1010)
关键词 Hilbert space APPLICABILITY Haar wavelet approximation method operatorequation Hilbert space applicability Haar wavelet approximation method operatorequation
  • 相关文献

参考文献4

二级参考文献24

  • 1Shou-zhi YANG You-fa LI.Two-direction refinable functions and twodirection wavelets with high approximation order and regularity[J].Science China Mathematics,2007,50(12):1687-1704. 被引量:8
  • 2杨建伟,李落清,唐远炎.CONSTRUCTION OF COMPACTLY SUPPORTED BIVARIATE ORTHOGONAL WAVELETS BY UNIVARIATE ORTHOGONAL WAVELETS[J].Acta Mathematica Scientia,2005,25(2):233-242. 被引量:4
  • 3Adams D R. On the existence of capacitary strong type estimates in Rn. Ark Mat, 1976, 14:125-140.
  • 4Campanato S. Proprieta di holderianita di alcune classi di funzioni. Ann Scuola Norm Sup Pisa, 1963, 17: 175-188.
  • 5Deng F W, Yang Q X. Wavelet characterization of multiplier spaces. Math Methods Appl Sci. DOI: 10.1002/mma.2638.
  • 6Essen M, Janson S, Peng L Z, Xiao J. Q spaces of several real variables. Indiana Univ Math J, 2000, 2: 575-615.
  • 7Gala S. Multipliers spaces, Muckenhoupt weights and pseudo-differential operators. J Math Anal Appl, 2006, 324:1262-1273.
  • 8Gala S, Lemarie-Rieusset P C. Multipliers between Sobolev spaces and fractional differentiation. J Math Anal Appl, 2006, 322:1030-1054.
  • 9Kufner A, John O~ Fu6ik S. Function Spaces. Prague: Academia, 1977.
  • 10Lemarie-Rieusset P G. Distributions dont tousles coefficients d'ondelettes sont nuls. Comptes Rendus Acad Sci. 1994, 318:1083-1086.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部