期刊文献+

基于混合蛙跳与阴影集优化的粗糙模糊聚类算法 被引量:8

Shuffled frog leaping algorithm and shadowed sets-based rough fuzzy clustering algorithm
原文传递
导出
摘要 针对粗糙模糊聚类算法对初值敏感、易陷入局部最优和聚类性能依赖阈值选择等问题,提出一种混合蛙跳与阴影集优化的粗糙模糊聚类算法(SFLA-SRFCM).通过设置自适应调节因子,以增加混合蛙跳算法的局部搜索能力;利用类簇上、下近似集的模糊类内紧密度和模糊类间分离度构造新的适应度函数;采用阴影集自适应获取类簇阈值.实验结果表明,SFLA-SRFCM算法是有效的,并且具有更好的聚类精度和有效性指标. For the problem that the rough fuzzy clustering algorithm is sensitive to the initial value, easy to fall into a local optimal solution, and the clustering performance of algorithm depends on the selection of threshold, a rough fuzzy clustering algorithm based on the shuffled frog leaping algorithm and shadowed sets(SFLA-SRFCM) is proposed. The adaptive factor is developed to enhance the local search ability, the within cluster tighness and the between cluster scatter of fuzzy lower approximate sets and fuzzy upper approximate sets are used to construct a new fitness function. Shadowed sets are applied to obtain the threshold adaptively. Experimental results show that SFLA-SRFCM is effective and has better clustering accuracy and validity index.
出处 《控制与决策》 EI CSCD 北大核心 2015年第10期1766-1772,共7页 Control and Decision
基金 国家自然科学基金项目(61363027) 广西自然科学基金项目(2012GXNSFAA053225)
关键词 粗糙集 阴影集 粗糙模糊聚类 混合蛙跳算法 rough sets shadowed sets rough fuzzy clustering shuffled frog leaping algorithm
  • 相关文献

参考文献12

  • 1Jain A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31 (8): 651-666.
  • 2Mitra S, Banka H, Pedrycz W. Rough fuzzy collaborative clustering[J]. IEEE Trans on Systems, Man, and Cybernetics, PartB: Cybernetics, 2006, 36(4): 795-805.
  • 3Maji P, Pal S K. RFCM: A hybrid clustering algorithm using rough and fuzzy sets[J]. Fundamenta Informaticae, 2007,80(4): 475-496.
  • 4姚丽娟,罗可.基于粒子群的粗糙核聚类算法[J].计算机应用研究,2012,29(8):2854-2857. 被引量:4
  • 5王学恩,韩德强,韩崇昭.采用不确定性度量的粗糙模糊C均值聚类参数获取方法[J].西安交通大学学报,2013,47(6):55-60. 被引量:9
  • 6Zhou J, Pedrycz W, Miao D. Shadowed sets in the characterization of rough-fuzzy clustering[J]. Pattern Recognition, 2011, 44(8): 1738-1749.
  • 7Peters G. Rough clustering utilizing the principle of indifference[J]. Information Sciences, 2014, 277(2): 358- 374.
  • 8Eusuff M M, Lansey K E. Optimization of water distribution network design using the shuffled frog leaping algorithm[J]. J of Water Resources Planning and Management, 2003, 129(3): 210-225.
  • 9Lingras P, West C. Interval set clustering of web users with rough k-means[J]. J of Intelligent Information Systems, 2004,23(1): 5-16.
  • 10Amiri B, Fathian M, Maroosi A. Application of shuffled frog-leaping algorithm on clustering[J]. The Int J of Advanced Manufacturing Technology, 2009,45(1/2): 199- 209.

二级参考文献24

共引文献11

同被引文献77

引证文献8

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部