期刊文献+

基于形状特征的静态手势数字识别 被引量:4

Static Gesture Digit Recognition Based on Shape Features
下载PDF
导出
摘要 本文提出了一种基于形状特征的静态手势识别算法.对分割出来的手势二值图像进行细化处理,根据细化骨骼恢复出手指形状的候选区域,提取形状特征并进行手势识别,即判断手指个数从而对手势数字0-5进行识别.本文在Matlab2012平台下对采集的中型数据库样本进行识别,平均识别率达到97.91%,平均识别速度为2.14s.同时,对实时采集的数据结果进行测试,实验结果具有一致性. This paper presents a static hand gesture recognition algorithm based on shape features. The proposed algorithm segments the binary images of hand gesture, adopts thinning procedure to extract the hand skeleton, reconstructs the candidate fingers and extracts the shape features. Finally, the features are classified into 6 categories, namely 0 to 5. The experimental result on a medium sized database shows that the average recognition rate is 97.91% and the average recognition time is 2. 14s on the Matlab 2012 platform. Real time tests were also conducted and the result is the same.
出处 《北方工业大学学报》 2015年第3期43-48,24,共7页 Journal of North China University of Technology
基金 北京市教委面上项目(KM201510009005)
关键词 手势识别 肤色检测 手指重建 形状特征 gesture recognition skin detection finger restoration shape feature
  • 相关文献

参考文献8

二级参考文献47

  • 1肖冰,王映辉.人脸识别研究综述[J].计算机应用研究,2005,22(8):1-5. 被引量:53
  • 2任雅祥.基于手势识别的人机交互发展研究[J].计算机工程与设计,2006,27(7):1201-1204. 被引量:30
  • 3江冬梅,王玉芳.基于方向直方图矢量的手势识别[J].信息技术与信息化,2006(2):53-55. 被引量:3
  • 4Zhu Yuanxin,Proceedings of SPIE,Vol 35 45,1998年,228页
  • 5Pavlovic V,IEEE Trans Pattern Anal Machine Intell,1997年,19卷,7期,677页
  • 6祝远新,智能接口与智能应用新进展.第2届全国智能接口与智能应用学术会议论文集,1997年,279页
  • 7陶霖密,第四届中国计算机智能接口与智能应用学术会议论文集,1999年,205页
  • 8Cui Yuntao,Proceedings of the IEEE International Conference of PatternRecognition,1997年,617页
  • 9Zhu Yuanxin,Proceedings of the Asian Conference of Computer Vision,2000年,282页
  • 10李文生,解梅,邓春健.基于机器视觉的动态多点手势识别方法[J].计算机工程设计,2012,5(8):60-72.

共引文献78

同被引文献41

  • 1李瑞峰,贾建军.一种复杂背景下的手势提取方法[J].华中科技大学学报(自然科学版),2008,36(S1):186-188. 被引量:6
  • 2冯志全,蒋彦.手势识别研究综述[J].济南大学学报(自然科学版),2013,27(4):336-341. 被引量:29
  • 3Huang D Y, Hu W C, Chang S H. Gabor filter-based hand-pose an- gle estimation for hand gesture recognition under varying illumination [J]. Expert Systems with Applications,2011,38(5):6031-6042.
  • 4YT Li, JP Wachs.Recognizing hand gestures using the weighted elastic graph matching (WEGM) method [J],lmage & Vision Computing,?2013,? 31 (31):649-657.
  • 5Dalai N,Triggs B. Histograms of oriented gradients for human detection [C].IEEE Conference on Computer Vision and Pattern Recognition,San Diego,USA,2005:886-893.
  • 6Liu Y, Rayens W.PLS and dimension reduction for classification [J]. Computational Statistics,2007,22(2): 189-208.
  • 7Ramadan S, Davis L. Action recognition using partial least squares and support vector machines[C].IEEE International Conference on ImagePro- c essing,B russels,B elgium,2011:533-536.
  • 8Baek J, Kim M. Face recognition using partial least squares compo- nents[J].Pattern Ikecognition, 2004,37 (6):1303-1306.
  • 9Baten AKMA, Chang BCH, Halgamuge SK,et al.Splice site identifi- cation using probabilistic parameters and SVM classification [J],BMC Bioinforrnatics,2006,7(5):S 15.
  • 10Dalal N,Triggs B. Histograms of oriented gradients for human detection [C].IEEE Conference on Computer Vision and Pattern Recognition,San Diego,USA,2005:886-893.

引证文献4

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部