期刊文献+

基于距离和密度双度量的模糊k-modes算法

Fuzzy K-modes Algorithm Based on Double Measurement of Distance and Diversity
下载PDF
导出
摘要 大多数模糊k-modes的相关改进算法仅关注对象之间的距离,并未关注对象的空间分布对于聚类的影响。将距离和密度双度量的测度方法引入模糊k-modes算法进行改进,该方法将对象的空间分布考虑在内,从而以一种更加合理的方式更新对象的隶属度。通过来自于UCI机器学习库的数据集测试算法改进前与改进后的性能,算法改进后的聚类正确率高于改进前的,证明算法改进后性能更好。 This paper introduces the double measure means of distance and density into fuzzy k-modes algorithm to im-prove it's performance.The method takes account into spatial distribution of data objects,with a more proper way to update the degree of membership of data objects.Using the datasets come from UCl machine learning repository to test the per-formance of the former and improved algorithm.The correct rate of improved algorithm is higher than the former,which shows the performance of improved algorithm is better than the former.
出处 《工业控制计算机》 2015年第9期90-91,94,共3页 Industrial Control Computer
基金 陕西省自然科学基金项目(2014JM2-6114) 陕西省教育厅自然科学专项(12JK0743) 教育部教改项目(2-3-ZXM-09)
关键词 模糊k-modes 距离 密度 隶属度 UCI机器学习库 fuzzy k-modes,distance,diversity,degree of membership,UCI machine learning repository
  • 相关文献

参考文献6

二级参考文献47

  • 1张敏,于剑.基于划分的模糊聚类算法[J].软件学报,2004,15(6):858-868. 被引量:176
  • 2薛忠,谢维信.模糊C均值聚类算法的一种初始化方法[J].系统工程与电子技术,1995,17(11):64-69. 被引量:12
  • 3陈宗海,文锋,聂建斌,吴晓曙.基于节点生长k-均值聚类算法的强化学习方法[J].计算机研究与发展,2006,43(4):661-666. 被引量:13
  • 4Han Jiawei,Kamber M.Data Mining Concepts and Techniques[M].San Francisco:Morgan Kaufmann,2001.
  • 5Brendan J F,Delbert D.Clustering by passing messages between data points[J].Science,2007,315(16):972-976.
  • 6Zhang Jiangshe,Liang Yiuwing.Improved possibilistic c-means clustering algorithms[J].IEEE Trans on Fuzzy Systems,2004,12(2):209-217.
  • 7Mac Q J.Some methods for classification and analysis of multivariate observation[C]//Proc of the 5th Berkley Symp on Mathematical Statistics and Probability.Berkley,California:University of California Press,1967:281-297.
  • 8Huang Zhexue.Clustering large data sets with mixed numeric and categorical values[C]//Proc of PAKDD97.Singapore:World Scientific,1997:21-35.
  • 9Huang Zhexue.Extensions to the K-means algorithm for clustering large data sets with categorical values[J].Data Mining and Knowledge Discovery,1998,2(3):283-304.
  • 10Ng M K,Li Junjie,Huang Zhexue,et al.On the impact of dissimilarity measure in K-modes clustering algorithm[J].IEEE Trans on Pattern Analysis and Machine Intelligence,2007,29(3):503-507.

共引文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部