期刊文献+

计算广告:“技术+数据+内容”的综合运用 被引量:1

Computational Advertising: A "Technology + Data + Content" Comprehensive Application
下载PDF
导出
摘要 计算广告是随着广告与互联网应用相结合而发展起来的研究领域,主要是利用互联网强大的数据收集和处理能力提升互联网广告的效果。现有的针对计算广告的研究多停留在"技术+数据"层面,包括数据管理、信息检索、数据挖掘、机器学习、分布式系统等。创意是广告的核心,而内容则是创意的关键。"技术+数据"能精准细分消费人群,"内容"能加大沟通力度。计算广告应当是"内容+技术+数据"的综合运用。 Computational advertising is establishing a new sub-discipline calculated with combination of advertising and internet application, which mainly use the internet powerful data collection and processing power to promote the effect of Internet advertis- ing. The existing study of computational advertising stay in "technology + data"level, including data management, information re- trieval, data mining, machine learning, distributed systems, etc. Creativity is the core of the ads, while the content is the key to cre- ativity. "Technology + data" can accurately segment consumers, "content" can intensify communication. Computational advertising should be "content + technology + data" comprehensive application.
作者 胡晓峰 HU Xiao-feng (Hunan Vocational Institute of TechnolOgy, Xiangtan 411100, China)
出处 《电脑知识与技术》 2015年第7期94-95,共2页 Computer Knowledge and Technology
关键词 计算广告 广告检索 数据 内容 点击率 computational advertising advertisement retrieval data content click-through rate
  • 相关文献

参考文献3

二级参考文献100

  • 1CR—Nielsen.CRNielsen发布2010年上半年中国互联网广告市场简报.http://www.cr—nielsen.com/wangluo/trend/201007/291758.html,2010.7.
  • 2eMarketer. Online Ad Spend Surpasses Newspapers. http://affiliate program, amazon, com/gp/advertising/api/ detail/main, html. 2010.12.
  • 3David Ogilvy. Ogilvy on Advertising. Vintage, 1985. 12.
  • 4Phillip Nelson. Advertising as information. The Journal of Political Economy, 1974, 82(4): 729 754.
  • 5新浪.新浪微博用户超过1亿,开始进军电子商务市场.http://tech.sina.com.cn/i/2011-03-02/17395237059.shtml.2011.3.
  • 6新浪.Twitter董事长称全球用户数已突破2亿.http://teeh.sina.com.cn/i/2011—01—12/17495087422.shtml,20l1.1.
  • 7eMrketer. Twitter ad revenues to soar this year. http:// wwwl. emarketer, com /Article. aspx?R= 1008192& AspxAutoDetectCookieSupport= 1, 2011.1.
  • 8Regelson M, Fain D. Predicting click through rate using keyword clusters//Proceedings of the 2nd Workshop on Sponsored Search Auctions. 2006.
  • 9Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Metzler D, Riedel L, Yuan J. Online expansion of rare queries for sponsored search//Proceedings of the SIGIR. 2009.
  • 10Radlinski F, Broder A, Ciccolo P, Gabrilovich E, Josifovski V, Riedel L. Optimizing relevance and revenue in ad search: A query substitution approach//Proceedings of the SIGIR. 2008.

共引文献58

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部