期刊文献+

利用动态模拟计算间歇同步糖化发酵

Dynamic simulation of simultaneous saccharification and fermentation process for ethanol production
原文传递
导出
摘要 在同步糖化发酵生产乙醇过程中,探究其内部规律对深入研究乙醇发酵过程有着重要意义。利用Aspen Dynamics软件对间歇操作下的同步糖化发酵生产乙醇过程进行模拟,并与Aspen Plus间歇发酵模拟进行比较。考察了糖化酶加入量和酵母接种率对发酵过程中糊精浓度、葡萄糖浓度和乙醇浓度以及相应反应速率的影响。相比于Aspen Plus模拟间歇发酵,Aspen Dynamics模拟可以考虑加料对发酵的影响,模拟更符合实际。糊精消耗速率在16 h达到最大,葡萄糖消耗速率和乙醇生成速率在20h后变化趋于平稳。最适糖化酶加入量为100 U/g,最适酵母接种率为30%。 As to the ethanol production by simultaneous saccharification and fermentation process, to study its interior rule can be significant for developing an economical, scientific and efficient fermentation process. The simulation of the simultaneous saccharification and fermentation via batch operation was accomplished by Aspen Dynamics software, and the simulation results were compared with that by Aspen Plus. The effects of concentration of glueoamylase and yeast inoculum size were taken into consideration in the batch fermentation process. The simulation model built by Aspen Dynamics software, which has taken charging into account, can accord well with practice even more. After 16 h of fermentation, reaction rate of dextrin reached its maximum, and reaction rate of glucose and ethanol began to flatten after 20 h of fermentation. The optimum usage of glucoamylase is 100 U/g and the yeast inoculum size is 30%.
出处 《计算机与应用化学》 CAS 2015年第9期1075-1080,共6页 Computers and Applied Chemistry
关键词 乙醇 同步糖化 发酵 动态模拟 ethanol simultaneous saceharification fermentation Aspen Dynamics
  • 相关文献

参考文献10

  • 1KIM S B, Park C, Kim S W. Process design and evaluation of production of bioethanol and β-1actam antibiotic from lignocellulosic biomass[J]. Bioresource technology, 2014, (172): 194-200.
  • 2PIETRZAK W, KAWA-RYGIELSKA J. Simultaneous sacehari- fication and ethanol fermentation of waste wheat-rye bread at very high solids loading: Effect of enzymatic liquefaction conditions[J]. Fuel, 2015, (147):236-242.
  • 3SAHA P, BAISHNAB A C, ALAM F, et al. Production of bio-fuel (bio-ethanol) from biomass (pteris) by fermentation process with yeast[J]. Procedia Engineering, 2014, (90):504-509.
  • 4DOMINGUEZ-BOCANEGRA A R, TORRES-MUNOZ J A, LOPEZ R A. Production of Bioethanol from ago-industrial wastes[J]. Fuel, 2014.
  • 5LI H, KIM N J, JIANG M, et al. Simultaneous saccharification and fermentation of lignocellulosic residues pretreated with phosphoric acid-acetone for bioethanol production[J]. Bioresource technology, 2009, 100(13):3245-3251.
  • 6TAO J, YU S, WU T. Review of China's bioethanol development and a ease study of fuel supply, demand and distribution of bioethanol expansion by national application of E10[J]. Biomass and bioenergy, 2011, 35(9):3810-3829.
  • 7FERRARI M D, GUIGOU M, LAREO C. Energy consumption evaluation of fuel bioethanol production from sweet potato[J]. Bioresource technology, 2013, 136:377-384.
  • 8VERMA G, NIGAM P, SINGH D, et al. Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and<i> Saccharomyces cerevisiae21 [J]. Bioresource technology, 2000, 72(3):261-266.
  • 9MATSUMURA M, HIRATA J, ISHII S, et al. Kinetics of saccharification of raw starch by glucoamylase[J]. Journal of chemical technology and biotechnology, 1988, 42(1):51-67.
  • 10HOPPE G K, HANSFORD G S. Ethanol inhibition of continuous anaerobic yeast growth[J]. Biotechnology letters, 1982, 4(1): 39-44.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部