期刊文献+

基于学习自动机的移动机器人导航行为协调控制

Behavior coordination control based on mobile robot navigation of learning automata
下载PDF
导出
摘要 针对移动机器人导航控制中的行为协调问题,提出了一种学习速率可控的学习自动机。该方法将机器人与障碍物之间的接触时间变化作为奖惩信号,通过主动控制机器人线速度来调节学习决策时间,根据环境动态特性调整行为动机,并通过学习决策时间和行为动机控制共同控制学习速率,保证机器人在学习决策时间内完成导航行为的协调执行。仿真证实提出的学习自动机应用于移动机器人导航控制是可行的,与动力学分岔控制方法对比,在未知动态环境中进行导航行为协调控制,提出方法的安全性更高。 With an aim at behavior coordination problem in the mobile robot navigation control, this paper suggests a kind of learning automata with the controllable rate.The learning automata uses the contact time variation between the robot and obstacles as the reward and penalty signals to regulate the learning and decision time through the active control over robot linear velocity and to adj ust the behavior intension in terms of environ dynamic behaviors and to control over the shared management learning rate through the learning decision time and the behavior intension control,whereby ensuring that the robot can complete the coordination implementation of naviga-tion behaviors within the learning decision time.The simulation results indicate that the learning automata suggested in this paper in applying to the navigation control by mobile robot is feasible, and in comparison with the dynamic bifurcation control method,its safety in unknown dynamic environ to carry out navigation behavior coordination control is much higher.
出处 《西安理工大学学报》 CAS 北大核心 2015年第3期310-315,共6页 Journal of Xi'an University of Technology
基金 国家自然科学基金资助项目(10872160 51275407 51475365) 陕西省自然科学基础研究计划重点资助项目(2011JZ012)
关键词 移动机器人 行为动力学方法 行为协调 学习自动机 mobile robot behavior dynamics method behavior coordination learning automata
  • 相关文献

参考文献15

  • 1Bicho E, Mallet P, Sch6ner G. Target representation on an autonomous vehicle with low-level sensors[J]. The International Journal of Robotics Research, 2000, 19(5) :424-447.
  • 2Warren W H. The dynamics of perception and action[J]. Psychological Review, 2006,113(2) : 358-389.
  • 3郝大鹏,傅卫平,杨世强,王雯.移动机器人行为动力学导航方法研究[J].机械科学与技术,2013,32(10):1488-1491. 被引量:5
  • 4Monteiro S, Bicho E. Attractor dynamics approach toformation control: theory and application [J]. Autono- mous Robots, 2010,29(3) :331-355.
  • 5雷艳敏,朱齐丹,冯志彬.基于速度障碍和行为动力学的动态路径规划[J].华中科技大学学报(自然科学版),2011,39(4):15-19. 被引量:14
  • 6郝大鹏,傅卫平,王雯.基于行为动力学的移动机器人安全导航方法[J].系统工程与电子技术,2014,36(1):136-142. 被引量:6
  • 7郝大鹏,傅卫平,王雯.基于接触时间的移动机器人安全导航[J].计算机应用,2014,34(4):1209-1212. 被引量:4
  • 8Large E W, Christensen H I, Bajcsy R. Scaling the dy- namic approach to path planning and control: competi- tion among behavioral constraints [J]. The Internation- al Journal of Robotics Research, 1999, 18(1): 37-58.
  • 9Ijspeert A J, Nakanishi J, Hoffmann H, et al. Dynami- cal movement primitives., learning attractor models for motor behaviors [J]. Neural Computation, 2013, 25 (2) : 328-373.
  • 10Thathachar M. Learning systems: stochastic automata models [J]. Defence Science Journal, 1985, 35 (3) : 361-366.

二级参考文献46

  • 1程磊,王永骥,朱全民.基于通信的多移动机器人编队控制系统[J].华中科技大学学报(自然科学版),2005,33(11):67-70. 被引量:5
  • 2Bicho E, Mallet P, Schoner G. Using attractor dynamics to control autonomous vehicle motion[C]// Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. Los Alamitos: IEEE Comp Soc, 1998: 1176-1182.
  • 3Althaus P. Indoor navigation for mobile robots: control and representations[D]. Stockholm: Royal Institute of Technology, 2003.
  • 4Lars-Peter Ellekilde, Christensen H I. Control of mobile manipulator using the dynamical systems approaeh[C]//2009 IEEE International Conference on Robotics and Automation. Piseataway: Institute of Electrical and Electronics Engineers Inc, 2009: 1370-1376.
  • 5Pirjanian P, Christensen H I, Fayman J. Application of voting to fusion of purposive modules: an experimental investigation[J].Robotics and Autonomous Systems, 1998, 23(4):253-266.
  • 6Zhang H D, Liu S R. On-line affective cognitive learning and decision-making for autonomous navigation of mobile robots [C] // Proceedings of the 2009 IEEE International Conference on Information and Automation. Piscataway: IEEE Computer Society, 2009: 1234-1239.
  • 7Yang S Q, Fu W P, et al. Research on application of genetic algorithm for intelligent mobile robot navigation based on dynamic approach[C]//Proceedings of the IEEE International Conference on Automation and Logistics. Piscataway: IEEE Computer Society, 2007: 898-902.
  • 8van den Berg J, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multi-agent navigation [C]//Proceedings of IEEE International Conference on Robotics and Automation. Piscataway: Institute of Electrical and Electronics Engineers Inc, 2008: 1928-1935.
  • 9Lei Y M, Zhu Q D, Feng Z B. Stepping motion co ordination strategy based on environmental prediction for multiple robots system[C] // Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation. Piscataway: IEEE Computer Society, 2009: 2060-2065.
  • 10Schoner G, Dose M. A dynamical systems approach to task-level system integration used to plan and control autonomous vehicle motion[J]. Robotics and Autonomous Systems, 1992, 10(4): 253-267.

共引文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部