期刊文献+

光学镜片精密车削表面粗糙度预测及参数优化 被引量:1

Roughness Prediction and Process Parameter Optimization of Lens Turning
下载PDF
导出
摘要 针对环曲面光学镜片加工难,对环曲面精密车削加工进行粗糙度预测及工艺参数优化研究。基于响应曲面法(RSM)采用慢刀伺服车削技术进行曲面加工,探讨了刀具圆弧半径、进给速度、背吃刀量、主轴转速及离散角对表面质量的影响,建立了以表面粗糙度为响应的多元回归数学模型,利用满意度函数法对模型进行优化求解,确定了最佳工艺条件:刀具圆弧半径0.89mm,进给速度5μm/r,背吃刀量5μm,主轴转速200.32r/min,离散角5.64°。通过该模型分析了因素对响应的交互作用及其对表面粗糙度影响力的大小:刀具圆弧半径影响最显著,进给量和背吃刀量次之。验证试验表明,通过响应曲面法建模能对环曲面镜片车削加工的表面粗糙度进行有效预测。 Aiming at the difficulty of toric spectacle lens machining,parameters of slow tool servo were optimized.Based on Response Surface Methodology(RSM),influence of tool nose radius,feed rate,depth of cut,spindle speed and discretization angle on surface quality was discussed.Using surface roughness as the response,the multiple regression model was established.Desirability function approach was used to solve the multiple regression model,and the optimum parameters(i.e.tool nose radius of 0.89 mm,feed rate of 5μm/r,depth of cut of 5μm,spindle speed of 200.32r/min and discretization angle of 5.64°)were determined.Through the model,the interaction between various factors and their influences on surface quality were analyzed.Tool nose radius exerted the maximum effect on the surface roughness,feed rate and depth of cut followed.The verification test indicated that the roughness of complex surface turning could be predicted by the RSM model.
出处 《压电与声光》 CSCD 北大核心 2015年第5期796-801,共6页 Piezoelectrics & Acoustooptics
基金 江苏省产学研联合基金资助项目(BY2013051)
关键词 环曲面光学镜片 响应曲面法 粗糙度预测 参数优化 toric spectacle lens RSM roughness prediction parameters optimization
  • 相关文献

参考文献6

二级参考文献24

  • 1Philip G Neudeck. Progress in silicon carbide semiconductor electronics technology [ J ]. Journal of Electronic Materials,1995, (24) :283 -288.
  • 2Montgomery D C. Design and Analysis of Experiments. Posts and Telecom Press, 2009.
  • 3Ohata T Y. Nakamura, E. Nakamachi. Development of optimum process design system for sheet fabrication using response surface method [ J ]. Journal of Materials Processing Technology, 2003,144 ( 1 ) :667 - 672.
  • 4Giovanni M. Response surface methodology and product optimiza- tion [ J ]. Food Technology, 1983,37 ( 11 ) :41 - 45.
  • 5Godfrey O U, Kumar S. Response surface methodology-based ap- proach to CNC drilling operations [ J ]. Journal of Materials Processing Technology, 2006,171:41 - 47.
  • 6Francis F, Abdulhameed S, Nampoothiri K M. Use of response surface methodology for optimizing process parameters for the pro- duction of a-amylase by as-pergillus oryzae [ J ]. Biochemical Engineering Journal, 2003,15 (2) : 107 - 115.
  • 7Ambat I P, Ayyanna C. Optimizing medium eonstituents and fer- mentation conditions for citric acid production from palmyra jag- gery using response surface method[ J]. World Journal of Mi- crobiology and Biotechnology, 2001,7 (4) :331 - 335.
  • 8Palanikumar K N, et al. Surface roughness parameters optimization in machining A356/SiC/20p metal matrix composites by PCD tool using response surface methodology and desirability function [ J ]. Machining Science and Technology, 2008,12:529 -545.
  • 9Jinshan L, Cuiqing Y M, Yan L. Medium optimization by combina- tion of response surface methodology and desirabffity function: an application in glutamine production [ J ]. International Journal of Advanced Manufacturing Technology, 2007,74:563 -571.
  • 10Shew Y W, Kwong C K. Optimization of the plated through hole process using experimental design and response surface methodol- ogy [ J ]. International Journal of Advanced Manufacturing Technology, 2002,20:758 - 764.

共引文献27

同被引文献13

引证文献1

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部