期刊文献+

微流控反应器中苯酚在Ti/SnO_2-Sb_2O_5电极上的阳极氧化分析 被引量:1

Electrochemical degradation of phenol by Ti/SnO_2-Sb_2O_5 in microfluidic reactor
下载PDF
导出
摘要 目前在电化学氧化处理法降解苯酚废水的研究过程中,研究者多将重心放在活性电极的探索及制备上,而对于反应器的开发鲜有报道。就这一问题,本文研究了新型微流控反应器中苯酚的电化学降解效果。电化学氧化实验在装有Ti/SnO2-Sb2O5阳极的微型流通池中操作进行,实验对循环体系的体积流率ΦV、电极间距h的影响进行了考察。结果表明,当流通电解槽中的阴阳极间距采用微米级尺寸时,苯酚的阳极氧化反应取得了较快的氧化速度。在i=20 m A/cm2、ΦV=0.54 m L/min的电解条件下,电解2~3h苯酚去除率即可达到90%以上,相同流速下电极间距h越小降解速率越快。且由数据回归得到了苯酚的一系列随h的减小而增大的准一级反应的反应速率常数。这一结论表明微流控电解槽内的苯酚降解过程主要传质控制过程。 At present,most researchers focus on the exploration and preparation of the active electrode in the study of degradation of phenol. The development of new type of reactor has been rarely reported. A microfluidic reactor was used to determine the effects of the structure on the degradation of phenol. The electrochemical oxidation of phenol was performed in a micro flow cell equipped with a Ti/Sn O2-Sb2O5 anode,and the effects of volume flow rate,inter-electrode gap were investigated. The results demonstrated that a flow cell with a micro-matric distance between cathode and anode can be used to perform the electrochemical treatment of water contaminated by phenol with high removal. A high removal of phenol up to 90% was achieved under the suitable experimental conditions in 2—3h,and the pseudo-first order rate constant of phenol removal was determined from the model.
出处 《化工进展》 EI CAS CSCD 北大核心 2015年第10期3785-3789,共5页 Chemical Industry and Engineering Progress
关键词 微流控 反应器 电解 Ti/SnO2-Sb2O5 microfluidic reactor benzene electrolysis Ti/SnO2-Sb2O5
  • 相关文献

参考文献21

  • 1程子洪,高占先,徐军,王刃,马伟,韩迪秋.葡萄糖、淀粉、苯酚电化学氧化耦合制氢行为[J].化工进展,2013,32(7):1542-1546. 被引量:1
  • 2Ortiz-Gomez A B,Serrano-Rosale,Benito S R,et al. Enhanced mineralization of phenol and other hydroxylated compounds in a photocatalytic process assisted with ferric ions[J].Chemical Engineering Science,2008,63:520-557.
  • 3Khataee A R,Fathinia M,Zarei M,et al. Modeling and optimization of photocatalytic/photoassisted electro-Fenton like degradation of phenol using a neural network coupled with genetic algorithm[J].Journal of Industrial and Engineering Chemistry,2014,20:1852-1860.
  • 4Wang Y Q,Gu B,Xu W L,et al. Electro-catalytic degradation of phenol on several metal-oxide anodes[J].Journal of Hazardous Materials,2009,162:1159-1164.
  • 5Feng Y J,Li X Y. Electro-catalytic oxidation of phenol on several metal-oxide electrodes in aqueous solution[J].Water Research,2003,37:2399-2407.
  • 6Li M,Feng C,Hu W W,et al. Electrochemical degradation of phenol using electrodes of Ti/RuO2-Pt and Ti/IrO2-Pt[J].Journal of Hazardous Materials,2009,162:455-462.
  • 7Li X Y. Cui Y H,Feng Y J,et al. Reaction pathways and mechanisms of the electrochemical degradation of phenol on different electrodes[J].Water Research,2005,39:972-1981.
  • 8Cartaxo M A M,Ablad K,Douch J,et al. Phenol electrooxidation on Fe-Co3O4 thin film electrodes in alkaline medium[J].Chemosphere,2012,86:341-347.
  • 9Comninellis C H,Pulgarin C. Anodic oxidation of phenol for waste water treatment[J].Journal of Applied Electrochemistry,1991,21:703-703.
  • 10Tahar N B,Savall A. Electrochemical removal of phenol in alkaline solution. Contribution of the anodic polymerization on different electrode materials[J].Electrochimica Acta,2009,54:4809-4816.

二级参考文献5

同被引文献17

  • 1王辉,于秀娟,孙德智.一种新型电化学体系降解苯酚的机理研究[J].环境科学学报,2005,25(7):901-907. 被引量:16
  • 2POLCARO A M, VACCA A, PALMAS S. Electrochemical treatment ofwastewater containing phenolic compounds., oxidation at boron-doped diamond electrodes[J]. J. Appl. Electrochem., 2003, 33 (10) : 885-892.
  • 3PANIZZA M, BOCCA C, CERISOLA G. Electrochemical treatment of wastewater containing polyaromatic organic pollutants[J]. WaterRes., 2000, 34 (9) : 2601-2605.
  • 4MOOK W T, CHAKRABARTI M H, AROUA M K, et al. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquactdture wastewater using electrochemical technology: areview[J]. Desalination, 2012, 285: 1-13.
  • 5FOCKEDEY E, VAN L A. Coupling of anodic and cathodic reactions for phenol electro-oxidation using three-dimensional electrodes[J].WaterRes., 2002, 36 (16): 4169-4175.
  • 6XIONG Y, HE C, KARLSSON H T, et al. Performance of three-phase three-dimensional electrode reactor for the reduction of COD in simulated wastewater-containing phenol[J]. Chemosphere, 2003, 50 (1): 131-136.
  • 7Bounab L, Iglesias O, Elisa G R, et al. Effective heterogeneous electro-Fenton process of m-cresol with iron loaded actived carbon[J]. Rsc. Advances, 2015, 5 (39) : 31049-31056.
  • 8SOLERILLIA G J D, SANCHEZ C, LEBEAU B. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures[J]. Chemical Reviews, 2002, 102 (11): 4093-4138.
  • 9TAN J R, SHEN L Z, FU X S, et al. Preparation and conductive mechanism of mica titania conductive pigment[J]. Dyes and Pigment, 2004, 62 (2) : 107-114.
  • 10CANIZARES P, LOBATO J, PAZ R. Electrochemical oxidation of phenolic wastes with boron-doped diamond anodes[J]. Water Res., 2005, 39 (12): 2687-2703.

引证文献1

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部