期刊文献+

基于改进粒子群算法的云计算平台资源调度 被引量:6

Resource scheduling of cloud computing platform based on improved particle swarm optimization
下载PDF
导出
摘要 针对云计算任务动态变化造成集群资源利用不均衡问题,提出一种基于虚拟机动态迁移技术的云计算资源调度策略。迁移过程中采用引入窗口思想的指数平滑预测确定负载热点,虚拟机选择中综合考虑迁移效果和迁移速度,采用基于退火思想的粒子群算法寻找虚拟机最优放置,并借用轮盘赌思想实现平台资源长期优化。利用云仿真框架Cloud Sim对云计算平台中服务等级协议(SLA)违背率、虚拟机迁移次数、集群能耗以及剩余资源率进行实验,并将本算法与顺序放置、贪心算法和标准粒子群算法进行对比分析,结果表明本算法在上述各方面表现优于其他算法,为提高云计算平台性能提供了新思路。 For the unbalanced resource utilization of cloud computing cluster, this paper gave a resource scheduling strategy of cloud based on dynamic migration of virtual machine technology. During the migration process, it firstly determined the hotspots based on index smooth forecasting with window thinking, then selected the virtual machine by considering the effect of' migration and migration speed. It used the particle swarm optimization annealing thinking and brag-term optimization goals in the process of migration to search optimal position. By CloudSim simulation framework, the experiment simulated the appearances of the SLA violation rate, the rate of surplus resources, energy and migration times, and the algorithm is better than the greedy algorithm with migration and the standard particle swarm optimization algorithm and the sequence virtual machines placement with non-migratory. Experimental results also show that the algorithm is superior in all respects than the other algorithms, and this algorithm provides a new method on cloud computing platform for the research about improving the performanee of cloud platform.
出处 《计算机应用研究》 CSCD 北大核心 2015年第11期3230-3234,3246,共6页 Application Research of Computers
基金 国家自然科学基金资助项目(61074078) 中央高校基本科研业务费专项资金资助项目(12MS113)
关键词 云计算 虚拟机 动态迁移 模拟退火 粒子群算法 cloud computing virtual machine live migration simulate anneal arithmetic particle swarm optimization
  • 相关文献

参考文献13

二级参考文献163

  • 1孙瑞锋,赵政文.基于云计算的资源调度策略[J].航空计算技术,2010,40(3):103-105. 被引量:43
  • 2尹红军,李京,宋浒,李凌.云计算中运营商效益最优的资源分配机制[J].华中科技大学学报(自然科学版),2011,39(S1):51-55. 被引量:13
  • 3曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338. 被引量:160
  • 4Armbrust M, Fox A, Griffith R et al. A view of cloud computing. Communications of the ACM, 2010, 53(4): 50 58.
  • 5Patterson D, Brown A, BroadweIl P et al. Recovery oriented computing (ROC).. Motivation, definition, techniques, and case studies. Berkeley: UC Berkeley, Technical Report: UCB/CSD-02-1175 , 2002.
  • 6Clark C, Fraser K, Hand Set al. Live migration of virtual machines//Proceedings of the 2nd USENIX Symposium on Networked Systems Design and Implementation (NSDI'05). Boston, 2005: 273-286.
  • 7Zhu X, Young D, Watson B.J, Wang Z et al. 1000 lslands: An integrated approach to resource management forvirtualized data centers. Cluster Computing, 2008, 12(1): 45-57.
  • 8Li Bo, Li Jian Xin, Huai Jin-Peng et al. EnaCloud: An energy saving application live placement approach for cloud computing environments//Proceedings of the International Conference on Cloud Computing. Bangalore, 2009:17-24.
  • 9Ajiro Y, Tanaka A. Improving packing algorithms for server consolidation//Proceedings of the 33rd International Computer Measurement Group Conference. San Diego, 2007:399-406.
  • 10Gupta R, Bose S. K, Sundarrajan Set al. A two stage heuristic algorithm for solving server consolidation problem with item-item and bin-item incompatibility constraints//Proceedings of the 2008 IEEE International Conference on Services Computing (SCC'08). Hawaii, 2008:39-46.

共引文献389

同被引文献37

引证文献6

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部