期刊文献+

基于SMO-SVM的单点金刚笔钝化监测

Tool Wear Monitoring of Diamond Single-point Dresser Based on SMO-SVM
下载PDF
导出
摘要 针对单点金刚笔在砂轮修整过程中易于钝化且难以检测的问题,使用支持向量机建立智能模型。为了得到建立模型所需的样本库,使用小波包分析等方法在线提取修整时声发射信号中的特征信息,并引入钝化平台直径定义钝化临界值。模型本身选用基于串行优化算法的支持向量分类机,使用交叉验证法搭配遗传算法以达到优化模型参数的目的。实验结果表明,该模型在分类精度和计算时间上均优于一般的智能模型,可以有效地监测金刚笔的钝化。 An intelligent monitoring model was proposed based on support vector machine to solve the problem of identifying the wear of diamond single-point dresser in the dressing process of grinding wheel. To obtain the required samples for modeling, wavelet packet analysis was used to extract the feature informations from acoustic emission signals during the dressing process, and the diameter of wear platform was employed to define the threshold of dresser wear. Besides, for improving the prac- ticability of the model, a SOM method was applied to train the support vector classifier, the parame- ters of the model were selected by using genetic algorithm as well as cross validation method. Experimental results show that the model has higher performance than general intelligent model, and can monitor the wear of the dresser effectively.
机构地区 上海理工大学
出处 《中国机械工程》 EI CAS CSCD 北大核心 2015年第20期2733-2739,共7页 China Mechanical Engineering
基金 国家科技重大专项(2013ZX04008-011)
关键词 单点金刚笔 支持向量分类机 声发射信号 串行优化算法 钝化平台直径 diamond single-point dresser support vector classifier acoustic emission signal sequential minimal optimization(SMO) method diameter of wear platform
  • 相关文献

参考文献12

  • 1Marinescu M, Hitchiner E, Uhlmann, et al. Hand- book of Machining with Grinding Wheels[M]. Boca Raton: CRC/Taylor & Francis Group, 2007.
  • 2Martins C H R, Aguiar P R, Frech A, et at. Tool Condition Monitoring of Single-point Dresser Using Acoustic Emission and Neural Networks Models [J]. Instrumentation and Measurement, 2014, 63 (3) :667-679.
  • 3Habrat W, Batseh A, Porzycki J. Monitoring of the Single Point Diamond Dresser Wear[J]. Archives Civil Mech. ,2005,5(1):13-18.
  • 4Shi D, Axinte D A, Gindy N N. Online Machining Process Monitoring Using Wavelet Transform and SPC[C]//Proceedings of the IMTC. Sorrento,2006:2081-2086.
  • 5Karpuschewski B,Wehmeier M, Inasaki I. Grinding Monitoring System Based on Power and Acoustic Emission Sensors[J]. Annals of the CIRP, 2000,49 (1): 235-240.
  • 6Liao T W, Hua G G,Qu J,et al. Grinding Wheel Condition Monitoring with Hidden Markov Model- based Clustering Methods[J]. Machining Science and Technology, 2006,10(4): 511-538.
  • 7林峰,焦慧锋,傅建中.基于贝叶斯网络的平面磨削状态智能监测技术研究[J].中国机械工程,2011,22(11):1269-1273. 被引量:12
  • 8张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 9Yang Z S, Yu Z H. Grinding Wheel Wear Monito- ring Based on Wavelet Analysis and Support Vector Machine[J]. The International Journal of Advanced Manufacturing Technology, 2012, 62 ( 1/4 ) : 107 - 121.
  • 10Doman D A, Warkentin A, Bauer R. A Survey of Recent Grinding Wheel Topography Models [J]. International Journal of Machine Tools and Manu- facture, 2006,46(3/4): 343-352.

二级参考文献8

共引文献2285

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部