期刊文献+

基于边缘对称性和IULBP的行人检测方法

PEDESTRIAN DETECTION METHOD BASED ON EDGE SYMMETRY AND IULBP
下载PDF
导出
摘要 针对现有行人检测方法速度慢、无法满足实时性检测需求的缺点,提出一种基于边缘对称性和改进的等价局部二值模式的行人检测方法 ES-IULBP(Edge Symmetry and Improved Uniform Local Binary Patterns)。该方法首先对输入的图像进行垂直边缘提取并计算对称性,完成行人的初检测,确定行人候选区;然后引入等价局部二值模式,并对其改进,进行行人的纹理特征提取;最后结合线性支持向量机进行行人验证。实验结果表明,与基于梯度方向直方图特征的行人检测方法相比,ES-IULBP检测速度快、准确率高,并具有较强的鲁棒性。 In order to overcome the drawbacks of existing pedestrian detection method that its speed is slow and cannot meet real-time de-tection requirement,we proposed a pedestrian detection method which is based on edge symmetry and improved uniform local binary patterns, namely ES-IULBP.First,the method extracts the vertical edges of the inputting image and computes their symmetry to pre-detect the pedestri-an,and sets the candidate region of pedestrians.Then it introduces the uniform local binary patterns and improves it,and extracts the texture feature of pedestrian,at last it combines the linear support vector machine to validate the pedestrian.Experimental result proves that com-pared with the pedestrian detection methods based on histogram feature in gradient orientations,the ES-IULBP method has fast detection speed and high accuracy,and has stronger robustness as well.
作者 张敏霞 武芳
出处 《计算机应用与软件》 CSCD 2015年第10期216-219,247,共5页 Computer Applications and Software
关键词 行人检测 边缘对称 等价局部二值模式 梯度直方图特征 线性支持向量机 Pedestrian detection Edge symmetry Uniform local binary patterns (ULBP) Gradient histogram feature Linear support vector machine
  • 相关文献

参考文献11

  • 1曲永宇,刘清,郭建明,周生辉.基于HOG和颜色特征的行人检测[J].武汉理工大学学报,2011,33(4):134-138. 被引量:21
  • 2郭烈,赵宗艳,聂倩,张广西.利用腿部区域HOG特征的行人检测方法[J].计算机工程与应用,2013,49(1):217-221. 被引量:11
  • 3高爱华,杨韶瑞,秦文罡.一种改进的行人检测方法[J].西安工业大学学报,2012,32(4):259-263. 被引量:2
  • 4付洋,宋焕生,陈艳,朱小平.一种基于视频的道路行人检测方法[J].电视技术,2012,36(13):140-144. 被引量:7
  • 5Xiaoyu Wang, Tony X Han, Shuicheng Yan, et al. An HOG-LBP Hu- man Detector with Partial Occlusion Handling [ J ]. Computer Vision and Pattern Recognition, 1997:193 -199.
  • 6Navneet Dalai, Bill Triggs. Histograms of Oriented Gradients for Hu- man Detection[ J]. CVPR, 2005, 1 (20) :886 - 893.
  • 7Tuzel O, Porikli F M, Meer P. Pedestrian detection via classification on Riemannian manifolds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(10) :1713 -1727.
  • 8Qiang z, Mei-Chen Y, Kwang-Ting C, et al. Fast human detection using a cascade of histograms of oriented gradients[ C]//Computer Vi- sion and Pattern Recognition ( CVPR), IEEE Computer Society Con- ference on. 2006 : 1491 - 1498.
  • 9Wu B, Nevatia R. Simultaneous object detection and segmentation by boosting local shape feature based classifier [ C ] // Computer Vision and Pattern Recognition ( CVPR), IEEE Computer Society Conference on. 2007 : 1 - 8.
  • 10Tuzel O, Porikli F M, Meer P. Pedestrian detection via classification on Riemannian manifolds [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,30(10) :1713 - 1727.

二级参考文献55

共引文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部