期刊文献+

多机动目标GM-CBMeMBer跟踪算法 被引量:3

GM-CBMeMBer Tracking Algorithm of Multiple Maneuvering Targets
下载PDF
导出
摘要 针对杂波环境下标准的势均衡多伯努利滤波器不能有效跟踪多机动目标的问题,本文提出了一种新的多机动目标跟踪算法。该方法将势均衡多伯努利滤波器与"当前"统计自适应模型相结合,对目标的运动状态矩阵进行扩维,改变了目标状态转移矩阵和过程噪声方差,增加控制矩阵,实现目标加速度的自适应调整,从而使新算法能够适应目标运动状态的变化。仿真结果表明,在机动条件下,新算法能有效地跟踪多机动目标,而且跟踪精度较高。 Considering that the standard Cardinality Balanced Multi-Target Multi-Bernoulli(CBMe MBer) filter cannot track multiple maneuvering targets effectively in the clutter environment, a new tracking algorithm of maneuvering targets is proposed, which combines the CBMe MBer filter with the adaptive current statistical model. In the new algorithm, the dimension of the target state vector is augmented, the state transition matrix and the process noise covariance are adjusted, and the control matrix is attached. Then the targets' acceleration can be adjusted adaptively. Finally, the new algorithm can adapt to the change of the targets' moving state. Simulation results show that the proposed algorithm can track multiple maneuvering targets effectively, which has higher tracking accuracy in the maneuvering condition.
出处 《光电工程》 CAS CSCD 北大核心 2015年第10期7-12,共6页 Opto-Electronic Engineering
基金 国家自然科学基金项目(61201118) 中国博士后科学基金项目(2103M532020) 陕西省教育厅科研计划项目(15JK1291) 西安工程大学学科建设项目
关键词 势均衡多伯努利滤波器 机动目标 “当前”统计自适应模型 目标跟踪 概率假设密度滤波 CBMeMBer filter maneuvering targets adaptive current statistical model target tracking probability hypothesis density filter
  • 相关文献

参考文献10

  • 1Hoffmann C, Dang T. Cheap joint probabilistic data association filters in an interacting multiple model design [C]// Multi-sensor Fusion and Integration forIntelligentSystems, Heidelberg, Germany, September3-6, 2006, 06: 197-202.
  • 2Mahler R. Statistical Multi-source Multi-target Information Fusion [M]. Boston: Artech House, 2007: 5-11.
  • 3Mahler R, Vo Ba-Tuong, Vo Ba-Ngu. CPHD filtering with unknown clutter rate and detection profile [J]. IEEE Transactions on Signal Processing(S4244-0567), 2011, 59(8): 3497-3513.
  • 4Mahler R. Multi-target Bayes filtering via first-order multi-target moments [J]. IEEE Transactions on Aerospace and Electronic Systems(S0018-9251), 2003, 39(4): 1152-1178.
  • 5Mahler R. PHD filters of higher order in target number [J]. IEEE Transactions on Aerospace and Electronic Systems (S0018-9251), 2007, 43(4): 1523-1543.
  • 6Vo Ba-Tuong, Vo Ba-Ngu, Cantoni A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations [J]. IEEE Transactions on Signal Processing(S4244-0567), 2009, 57(2): 409-423.
  • 7范小军,刘锋,秦勇,张军.基于STF的“当前”统计模型及自适应跟踪算法[J].电子学报,2006,34(6):981-984. 被引量:46
  • 8刘宝光,陶青长,潘明海.基于当前统计模型的强机动目标跟踪算法[J].雷达与对抗,2012,32(1):28-30. 被引量:7
  • 9周卫东,张鹤冰,廖成毅.多传感器多机动目标跟踪的CPHD滤波算法[J].华中科技大学学报(自然科学版),2012,40(12):70-74. 被引量:3
  • 10郝燕玲,孟凡彬,王素鑫,孙枫.一种新的多机动目标跟踪的GMPHD滤波算法[J].上海交通大学学报,2010,44(7):873-877. 被引量:7

二级参考文献26

  • 1陈良洲,施文康.时间序列分析的随机集方法[J].上海交通大学学报,2005,39(3):400-404. 被引量:6
  • 2敬忠良,徐宏,周雪琴,戴冠中.基于神经网络的机动目标信息融合与并行自适应跟踪[J].航空学报,1995,16(6):715-719. 被引量:18
  • 3Goodman I R, Mahler R, Nguyen H. Mathematics of data fusion [M].Boston: Kluwer Academic, 1997.
  • 4Hoffmann C, Dang T. Cheap joint probabilistic data association filters in an interacting multiple model design[J]. Robotics and Autonomous Systems, 2009, 57(1) : 268-278.
  • 5Mahler R. Statistical multisource multitarget information fusion [M].Boston:Artech House, 2007.
  • 6Michanil N P. Maneuvering target tracking using multiple bistatic range and range-rate measurements [J]. Signal Processing, 2007, 87(7): 665-686.
  • 7Li X R, Jilkov V P. A survey of maneuvering target tracking, Part V: Multiple model methods [J].IEEE Trans on Aerospace and Electronic Systems, 2005, 41(4) : 1255-1321.
  • 8Vo B N, Singh S. On the Bayes filtering equations of finite set statistics [C]//Proeeedings of the 5th Asian Control Conference. Melbourhe, Australia: [ s. n. ], 2004: 1273-1278.
  • 9Mahler R. Multitarget bayes filtering via first-order multitarget moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39 (4): 1152- 1178.
  • 10Vo B N, Ma W K. The Gaussian mixture probability hypothesis density filter [J]. IEEE Transactions on Signal Proeessing, 2006, 54(11): 4091-4104.

共引文献55

同被引文献17

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部