期刊文献+

基于变尺度法和自适应步长的布谷鸟搜索算法 被引量:2

A Cuckoo Search Algorithm Based on Variable Metric Method and Adaptive Step
下载PDF
导出
摘要 布谷鸟搜索算法(Cuckoo Search,CS)是一种新型的元启发式算法。针对CS算法局部搜索能力较弱、后期收敛速度偏慢和收敛精度不高等缺点,提出一种基于变尺度法(DFP)和自适应步长(Adaptive Step)的布谷鸟搜索算法(DACS),使Lévy飞行的步长非线性自适应变化来提高算法的收敛速度,同时使经过Lévy飞行机制和淘汰机制进化后的布谷鸟种群再运用DFP快速获取全局最优解。用6种具有各种代表性的测试函数分别测试DACS算法和CS算法的性能。实验结果表明,DACS算法在保持强大的全局搜索能力的同时,比CS算法具有更快的收敛速度、更高的收敛精度和更好的鲁棒性,尤其适合多峰及高维函数的优化。 Cuckoo Search (CS) is a novel meta-heuristic algorithm. Aiming at the defects of weak local search ability ,slow convergence velocity and low convergence accuracy, a modified CS algorithm based on DFP and adaptive step is proposed in this paper. In the im- proved cuckoo search algorithm, the step of Levy flight nonlinear dynamic changes improve convergence velocity. After evolved from Levy flights and elimination mechanism, the cuckoo populations rapidly access to global minima by DFP. Sixth representative benchmark functions are used to test the performance of DACS algorithm and CS algorithm respectively. The conclusions indicate that DACS algo- rithm has faster convergence speed, higher convergence accuracy and robustness, compared with CS algorithm. Meanwhile, DACS algo- rithm keeps strong global search capability, which is particularly suitable for the optimization of multimodal function and high dimension function.
作者 江浩 阮奇
出处 《计算机技术与发展》 2015年第10期38-43,共6页 Computer Technology and Development
基金 国家基础科学人才培养基金资助项目(J1103303)
关键词 布谷鸟搜索 变尺度法 自适应步长 全局寻优 cuckoo search variable metric method adaptive step global optimization
  • 相关文献

参考文献14

  • 1Goldberg D E. Genetic algorithm in search, optimization and machine learning [ M ]. Boston : Addison - Wesley Longman Publishing Co. 1nc,1989.
  • 2Dorigo M, Bonabeau E, Theraulaz G. Ant algorithms and stig- mergy [ J ]. Future Generation Computer System, 2000, 16 (8) :851-871.
  • 3Kennedy J, Eberhart R. Particle swarm optimization[ C ]//Pro- ceedings of IEEE international conference on neural net- works. Perth : IEEE, 1995 : 1942-1948.
  • 4姜斌,梁士锋.化学工程中多目标遗传算法的应用[J].现代化工,2007,27(7):66-69. 被引量:4
  • 5张志猛,李九宝,刘兴高.一种基于新型蚁群算法的聚丙烯熔融指数预报模型[J].化工学报,2011,62(8):2270-2274. 被引量:4
  • 6毕荣山,杨霞,谭心舜,郑世清.改进的微粒群优化算法在过程综合中的应用[J].计算机与应用化学,2004,21(4):565-568. 被引量:6
  • 7Payne R B, Sorenson M D, Klitze K. The cuckoos [ M ]. Ox- ford : Oxford University Press ,2005.
  • 8Yang X S, Deb S. Cuckoo search via Levy flights [ C ]//Pro- ceedings of world congress on nature & biologically inspired computing. Piscataway: IEEE ,2009:210-214.
  • 9Yang X S, Deb S. Engineering optimization by cuckoo search [ J]. International Journal of Mathematical Modeling and Nu- merical Optimization ,2010,1 (4) :330-343.
  • 10Valian E, Tavakoli S, Mohanna S, et al. Improved cuckoo search for reliability optimization problems [ J ]. Computers & industrial Engineering ,2013,64:456-468.

二级参考文献35

共引文献76

同被引文献17

引证文献2

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部