期刊文献+

基于流行度制衡的微博用户相似度计算方法

Similarity Computing Method Based on the Micro-Blog User's Popularity Depression
下载PDF
导出
摘要 以微博用户推荐算法中相似度计算为研究对象,根据微博用户关注信息的特点,分析了关注用户的流行度的不同程度,以及这种程度差异对相似度计算产生的影响,在此基础之上提出了一种加入流行度制衡因子的相似度计算方法.可通过流行度制衡因子,在计算用户相似度时,适度减少(增加)流行度偏高(偏低)的用户对计算结果的影响.实验结果表明:加入流行度制衡因子的用户相似度计算具有更好的推荐效果. This paper aims to improve the performance of micro-blog users′recommendation algorithm whose key issue is user similarity calculation .This paper firstly introduces current several user similarity calculation methods and their shortcomings.And then, based on the characteristics of micro-blog users, we discuss their concerning users′popularity of different level , which aims to explore their effects on the user similarity calculation .And on this basis , an improved similarity calculating method of considering depression factor is proposed .In the user similarity calculation , popularity balance factor can reduce/increase the impact of calculation results caused by the user high/low popularity . The experimental results indicate that the proposed user similarity calculation method has better recommendation results .
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2015年第3期88-94,共7页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 湖北省自然科学基金资助项目(2011CDB416)
关键词 微博 个性化推荐 用户相似度 流行度制衡 micro-blog personalized recommendation user similarity popularity depression
  • 相关文献

参考文献19

  • 1Gao Q, Abel F, Houben G J, et al. A comparative study of users' microblogging behavior on Sina Weibo and Twitter[M]. Berlin: Springer, 2012: 88-101.
  • 2Bogers T, Bjrneborn L. Micro-serendipity: Meaningful coincidences in everyday life shared on Twitter [ J ]. iConference 2013, 2013 : 196-208.
  • 3Harmon J, McCarthy K, Smyth B. The pursuit of happiness: searching for worthy followees on [ J ]. Computer Networks and ISDN Systems, 1998, 30 ( 1- 7) : 107-117.
  • 4Hannon J, McCarthy K, Smyth B. Finding useful users on twitter: twittomender the followee recommender [ M ]. Berlin: Springer, 2011: 784-787.
  • 5Marcelo G.Armentano,Daniela Godoy,Analía Amandi.Topology-Based Recommendation of Users in Micro-Blogging Communities[J].Journal of Computer Science & Technology,2012,27(3):624-634. 被引量:8
  • 6Massa P, Avesani P. On the move to meaningful internet systems 2004 : CoopIS, DOA, and ODBASE [ M ]. Berlin: Springer, 2004:492-508.
  • 7Yuan W, Guan D, Lee Y K, et al. Improved trust- aware recommender system using smaU-worldness of trust networks [ J ]. Knowledge-Based Systems, 2010, 23(3) : 232-238.
  • 8张中峰,李秋丹.社交网站中潜在好友推荐模型研究[J].情报学报,2011,30(12):1319-1325. 被引量:24
  • 9Lekakos G, Giaglis G M. Improving the prediction accuracy of recommendation algorithms: approaches anchored on human factors [ J ]. Interacting with computers, 2006, 18(3): 410-431.
  • 10Recht B, Fazel M, Parrilo P A. Guaranteed minimum- rank solutions of linear matrix equations via nuclear norm minimization[J]. SIAM review, 2010, 52(3) : 471-501.

二级参考文献106

共引文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部