期刊文献+

基于节点亲密度和度的社会网络社团发现方法 被引量:12

A Community Detecting Method Based on the Node Intimacy and Degree in Social Network
下载PDF
导出
摘要 社会网络是现实社会在网络空间的延伸,研究社会网络的结构特征对于发现网络结构、预测网络行为、保障网络安全有着重要的意义.社团结构是社会网络最重要的一种结构特征.近年来,研究人员提出了大量的社团检测算法,但大多集中在无权网络,不能处理网络中越来越复杂的连接关系.为了衡量有向加权网络中节点之间的关联强度,提出了一种新的节点亲密度定义,在此基础上设计了一种基于节点亲密度和度的社团结构检测方法(community detecting method based on node intimacy and degree,CDID),并在真实的社会网络数据集上进行了实验验证.与传统的社团检测方法相比,CDID方法能够获得更加准确的社团划分结果,并为无向无权、有向无权、无向加权、有向加权网络的社团划分提供了一种统一的解决方法. Social network is an extension of realistic society in cyberspace.The research on structural characteristics of social network has an important significance on network architecture discovery,network behavior forecast and network security protection.The community structure is one of the basic and important structural characteristics of social network.In recent years,a lot of algorithms for community detecting in social network have been proposed.But they always focuse on unweighted networks,and can’t handle the more and more complex connect relationships between nodes.In order to measure the connection strength in directed and weighted networks,a new definition of node intimacy is proposed.Then,a community detecting method based on node intimacy and degree(CDID)is designed.This method is verified through a series of experiments on synthetic datasets and real-world social network datasets.Compared with other state-of-the-art algorithms,this methed can obtain more accurate community division results under a reasonable run time.And it also provides a unification community detecting method for the four different type networks,such as undirectedunweighted,directed-unweighted,undirected-weighted and directed-weighted networks.
出处 《计算机研究与发展》 EI CSCD 北大核心 2015年第10期2363-2372,共10页 Journal of Computer Research and Development
基金 国家自然科学基金重点项目(61133016) 国家自然科学基金青年项目(61502087) 中央高校基本科研业务费基础研究项目(ZYGX2014J066)
关键词 节点亲密度 节点度 加权网络 模块度 社团检测 node intimacy node degree weighted networks modularity community detecting
  • 相关文献

参考文献23

  • 1Girvan M, Newman M E J. Community structure in social and biological networks [J]. Proceedings of the NationalAcademy of Sciences of the United States of America, 2002, 99(12) : 7821-7826.
  • 2Newman M E J. Fast algorithm for detecting community structure in networks [J]. Physical Review E, 2004, 69(6) : 66-71.
  • 3Blondel V D , Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J].Journal of Statistical Mechanics: Theory and Experiment, 2008, 10 (1): 10008-10016.
  • 4Guimera R, Amaral L A N. Functional cartography of complex metabolic networks[J]. Nature, 2005, 433 (7028) : 895-900.
  • 5Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks [J]. Physical Review E, 2007, 76(3) : 1-11.
  • 6Bagrow J P, Bollt E M. Local method for detecting communities [J]. Physical Review E, 2005, 72(4): 1-10.
  • 7Gregory S. Finding overlapping communities in networks by label propagation[J]. New Journal of Physics, 2010, 12 (10) : 1-25.
  • 8Yang B, Cheung W K, Liu J. Community mining from signed social networks [J]. IEEE Trans on Knowledge and Data Engineering, 2007, 19(10) : 1333-1348.
  • 9Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure [J]. Proceedings of the National Academy of Sciences, 2008, 105 (4) : 1118-1123.
  • 10Ronhovde P, Nussinov Z. Multiresolution community detection for megascale networks by informed replica correlations [J].Physical Review E, 2009, 80(1) : 1-18.

二级参考文献68

  • 1Watts D J, Strogatz S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6638): 440-442.
  • 2Barabdsi A-L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
  • 3Girvan M, Newman M E J. Community structure in social and biological networks[J]. Proc of National Academy of Science, 2002, 9(12): 7821-7826.
  • 4Fortunato S. Community detection in graphs [J]. Physics Reports, 2010, 486(3/4/5): 75-174.
  • 5Gavin A C, Bosche M, Krause R. Functional organization of the yeast proteome by systematic analysis of protein complexes[J]. Nature, 2002, 415(6868): 141-147.
  • 6Palla G, Derenyi I, Farkas I, et al. Uncovering the overlapping community structures of complex networks in nature and society[J]. Nature, 2005, 435(7043): 814-818.
  • 7Tyler J R, Wilkinson D M, Huberman B A. Email as spectroscopy: Automated discovery of community structure within organizations [C] //Proc of the 1st Int Conf on Communities and Technologies. Amterdam, Netherlands: Kluwer Academic Publishers, 2003 : 81-96.
  • 8Radicchi F, Castellano C, Cecconi F, et al. Defining and identifying communities in networks [J]. Proc of National Academy of Science, 2004, 101(9): 2658-2663.
  • 9Newman M E J, Girvan M. Finding and evaluating community structure in networks [J]. Physical Review E, 2004, 69(2): 026113.
  • 10Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical ReviewE, 2004, 69(6): 066133.

共引文献96

同被引文献109

引证文献12

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部