期刊文献+

高斯非平稳机动目标波达角模型及跟踪

DOA model and tracking for Gaussian non-stationary maneuvering targets
原文传递
导出
摘要 在实际的跟踪情况中,由于环境条件、目标反射截面等因素的变化,回波信号的功率会随时间变化,即不满足通常阵列信号处理中对高斯信号作平稳性的假设。针对复杂运动条件下高斯非平稳目标的跟踪问题,提出了一种新的机动目标波达角(DOA)模型。该模型全面地刻画了高斯非平稳机动目标的动态,并将目标的DOA和信号功率作为状态变量进行了联合考虑,同时运用虚拟阵列的表示方法构建了相应的观测方程。对于建立的新模型,最后采用无迹卡尔曼滤波(UKF)的框架完成了整个跟踪算法。分析和仿真结果表明,当高斯非平稳机动目标之间存在长时间相互接近的情况时,新方法仍然可以获得较好的跟踪性能。 In practical applications,due to the variation of environment,radar cross section and other variable factors,the echo power changes over time,which is inconsistent with the stationary assumption of Gaussian signals in the general array signal processing.To address the tracking problem of Gaussian non-stationary maneuvering targets with complex movements,a new direction-of-arrival(DOA)model is proposed.This model captures the dynamic state of Gaussian non-stationary maneuvering targets completely,considering the DOA and signal power as a joint state vector.Meanwhile,this model utilizes virtual array representing method and constructs the observation equation accordingly.Finally,the unscented Kalman filter(UKF)algorithm is used to complete the whole tracking process.Both analyses and simulation results show that the new method is still able to achieve good tracking performance when the Gaussian non-stationary maneuvering targets are close to each other for a long time.
作者 虞翔 张建秋
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第10期3430-3438,共9页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(61171127)~~
关键词 阵列信号处理 波达角 多目标跟踪 高斯非平稳信号 虚拟阵列 无迹卡尔曼滤波 array signal processing direction of arrival multi-target tracking Gaussian non-stationary signal virtual array unscented Kalman filter
  • 相关文献

参考文献22

  • 1Johnson D H, Dudgeon D E. Array signal processing-concepts and techniques[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993: 424-467.
  • 2Sword C K, Simaan M, Kamen W W. Multiple target angle tracking using sensor array output[J]. IEEE Transactions on Aerospace and Electronic Systems, 1990, 26(2): 367-372.
  • 3Park S B, Ryu C S, Lee K K. Multiple target tracking algorithm using predicted angles[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 643-648.
  • 4Picinbono B. Random signals and systems[M]. Englewood Cliffs, NJ: Prentice-Hall, 1993: 177-180.
  • 5淦华东,李志舜,李乐,苏蔿.基于自适应子空间估计的DOA跟踪算法[J].声学技术,2004,23(4):214-217. 被引量:9
  • 6Ryu C S, Lee S H, Lee K K. Multiple target angle tracking algorithm using innovation extracted from signal subspace[J]. Electronics Letters, 1999, 35(18): 1520-1522.
  • 7Javier S A, Sylvie M. An efficient PASTd-algorithm implementation for multiple direction of arrival tracking[J]. IEEE Transactions on Signal Processing, 1999, 47(8): 2321-2324.
  • 8Valizadeh A, Karimi M, Oliaei O. An efficient algorithm for multiple direction of arrival tracking based on the constrained projection approximation approach and kalman filter[C]//ICASSP2007. Piscataway, NJ: IEEE Press, 2007: 1089-1092.
  • 9Hou S Y, Wu C S, Hung H S, et al. Improved tracking algorithm for multiple targets[C]//OCEANS-MTS/IEEE Kobe Techno-Ocean. Piscataway, NJ: IEEE Press, 2008: 1-4.
  • 10Chonavel T, Champagne B, Riou C. Fast adaptive eigenvalue decomposition: A maximum likelihood approach[J]. Signal Processing, 2003, 83: 307-324.

二级参考文献26

  • 1ZhangHongmei DengZhenglong.UKF-based attitude determination method for gyroless satellite[J].Journal of Systems Engineering and Electronics,2004,15(2):105-109. 被引量:7
  • 2Chiao E C, I.orenzelli F, Kung Y. Stochastic maximun likelihood DOA estimation in the presence of unkown non uniform noise[J]. IEEE Transactions on Signal Process ing, 2008, 56(7) 1 : 3038-3044.
  • 3Burg J P, Luenberger D G, Wenger D L. Estimation of structured covariance matrices[J]. Proceeding of IEEE,1982, 70(9): 963-974.
  • 4Goossens R, Hendrik R. Direction-of arrival and polariza tion estimation with uniform circular arrays in the presence of mutual coupling [J]. AEU-International Journal of Electronics and Communications, 2008, 62(3):199-206.
  • 5Manikas A, Proukakis C, I.efkaditis V. Investive study of planar array ambiguities based on "Hyperhelical" parameterization[J]. IEEE Transactions on Signal Processing, 1999, 47(6):1532-1541.
  • 6Moody M P. Direction of arrival estimation using a sparse circular array and multiplicative beamforming[J]. IEEE Transactions on Antennas and Propagation, 1983, 31 (4) : 678- 682.
  • 7Mathews C P, Zoltowski M D. Eigenstructure techniques for 2-D angle estimation with uniform circular arrays[J]. IEEE Transactions on Signal Processing, 1994, 42(9) 2395-2407.
  • 8Belloni F, Koivunen V. Beamspace transform for UCA: Error analysis and bias reduction [J]. IEEE Transactions on Signal Processing, 2006, 54(8): 3078-3089.
  • 9Belloni F, Richter A, Koivunen V. DoA estimation via manifold separation for arbitrary array structures[J]. IEEE Transactions on Signal Processing, 2007, 55 (10) : 4800-4810.
  • 10Goossens R, Rogier H, Werbrouck S. UCA root MUSIC with sparse uniform circular arrays[J]. IEEE Transac tions on Signal Processing, 2008, 56(8): 4095-4099.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部