摘要
本文提出了一种基于非结构同位网格的求解非定常不可压缩流动的高精度投影算法。采用单元中心非结构网格,利用动量插值方法实现同位网格上的压力速度耦合,对流项和扩散项的时间离散均采用C-N格式,空间离散则分别采用QUICK格式和中心差分。运用二维衰减涡流动、圆柱绕流和顶盖振荡驱动流等经典算例对算法进行了考核,结果表明本文算法与实验结果或经典数值解良好吻合,时间和空间均达到了二阶以上的收敛精度。
This paper presented a second-order fractional-step method for calculation of unsteady incompressible flows using cell centered unstructured grids.The momentum interpolation method was applied to eliminate the spurious pressure oscillations which might occur in non-staggered grid system.For temporal discretization,the Crank-Nicolson's scheme was applied to both convection and diffusion terms.On the other hand,the QUICK scheme was employed to evaluate the convection flux and the central-difference was used to calculate the diffusion.The procedure was validated by calculating the decaying-vortex problem,the flow over circular cylinder and an oscillatory lid driven cavity flow.The results well agreed with the benchmark numerical solutions or experimental data.The temporal convergence index showed that the resolution for the calculated unsteady results was higher than second-order.
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2015年第10期2160-2164,共5页
Journal of Engineering Thermophysics
基金
国家自然科学基金(No.51176048)
关键词
非定常不可压缩流动
投影法
非结构网格
有限体积法
unsteady incompressible flow
projection method
unstructured grid
finite volume method