期刊文献+

利用重力数据和深度控制同时估算三维基底深度和密度差

下载PDF
导出
摘要 本文提出了一种重力反演方法,它结合一些已知的基底深度,同时估算了沉积盆地的三维基底起伏和沉积包裹体的密度差随深度按抛物线衰减的参数。沉积物被并列在水平方向的三维垂向棱柱体网格所近似。棱柱体的厚度代表基底的深度,它是从重力数据中被估算的参数。为了估算密度差随深度抛物线衰减的参数,并得到稳定的基底深度的估算,我们对基底深度强行平滑并近似钻孔的估计深度和已知深度。将该方法应用于复杂的两个沉积截面的三维基底起伏的组合数据中,能清楚地用抛物线定律描述密度差随深度的变化。它的结果良好的估算密度差随深度抛物线衰减和基底起伏的真实参数。
作者 刘富强
出处 《新疆有色金属》 2015年第4期18-21,共4页
  • 相关文献

参考文献8

  • 1Cristiano M. Martins1, Valeria C. F. Barbosa, and Jo o B. C. Silva, Simultaneous 3D depth-to-basement and density- contrast estimates using gravity data and depth control at few points. GEOPHYSICS,VOL. 75, NO. 3, 2010; P121 - 128.
  • 2Barbosa, V. C. F., P. T. L.Menezes,and J. B. C. Silva, 2007, Gravity data as a tool for detecting faults: In-depth en- hancement of subtle Almada' s basement faults, Brazil: Geophys- ics, 72, no. 3, B59-B68.
  • 3Barbosa,V. C. F., J. B. C. Silva, and W. E. Medeiros, 1997, Gravity inversion of basement relief using approximate equality constraints on depths: Geophysics,62, 1745-1757.
  • 4Beltrao, J. F., .1. B. C. Silva, and J. C. Costa, 1991, Ro- bust polynomial fitting for regional gravity estimation: Geophysics, 56, 80-89.
  • 5Chakravarthi,V.,H.M. Raghuram, and S. B. Singh, 2002, 3D forward gravity modeling of density interfaces above which the density contrast varies continuously with depth: Computers and Geosciences, 28, 53-57.
  • 6Gallardo-Delgado, L. A.,M. A. Perez-Flores, and E. Go- mez-Trevino, 2003,Aversatile algorithm for joint 3D inversion of gravity and magnetic data:Geophysics, 68, 949-959.
  • 7Garcia-Abdeslem, J., 2005, The gravitational attraction of a right rectangular prism with density varying with depth fol- lowing a cubic polynomial: Geophysics,70, no. 6, 139-142.
  • 8Leao, J.W.D., P.T.L.Menezes, J. F. Beltrao, and J. B. C. Silva, 1996,Gravity inversion of basement relief constrained by the knowledge of depth at isolated points: Geophysics, 61, 1702- 1714.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部