期刊文献+

多特征迭代哈希 被引量:2

Multiple Feature Iterative Hashing
下载PDF
导出
摘要 随着数据量和数据维数的增加,对数据的分类,查询已经越来越重要了。为了更好地对视频、图片、文本等进行检索,哈希方法应运而生。近年已经有很多好的哈希算法,其速度快,适应高维数据,在模式识别,机器学习等方面得到了广泛的应用。现提出了一种新的多特征哈希方法,称为多特征迭代哈希。上述方法既考虑数据单特征上的紧哈希码,也考虑各特征之间的关系对哈希码的影响,并且通过迭代量化,得到了最优的哈希码。实验结果表明,上述方法在精度上优于三种单特征哈希方法。 With the increase of the amount of data and data dimension, classification and query of the data have become increasingly important. In order to retrieve video, images and text better, hash methods have emerged in re- cent years. There have been many good hash algorithms which have been widely applied in pattern recognition and machine learning, because of its high speed and its adaptability for high - dimensional data. This paper proposed a new method about multiple feature hash, called multiple feature iterative hashing (MFIH). The method considered the compact hash code of the data as a single feature and also the impact of relationships between features as hash codes. Moreover, we obtained optimal hash codes with iterative quantization. Experiments show that our method can achieve better efficiency than other three hash methods of single feature.
出处 《计算机仿真》 CSCD 北大核心 2015年第10期292-295,共4页 Computer Simulation
关键词 多特征 哈希 迭代量化 紧哈希码 Multiple feature Hashing Iterative quantization Compact hash code
  • 相关文献

参考文献17

  • 1P Indyk and R Motwani, "Approximate nearest neighbors: towards removing the curse of dimensionality [ C ]. in Proc. of 30th ACM Symposium on Theory of Computing, 1998:604 -613.
  • 2A Gionis, P Indyk and R Motwani. Similarity search in high di- mensions via hashing [ C ]. in Proc. of 25th International Confer- ence on Very Large Data Bases, 1999:518 -529.
  • 3R Salakhutdinov, A Mnih, and G Hinton. Restricted bohzmann machines for collaborative filtering[ C]. ICML, 2007 : 791 -798.
  • 4Y Weiss, A Torralba and R. Fergus. Spectral hashing [ C ]. in Proc. of Advances in Neural Information Processing Systems, D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, Eds., 2008, ,21 : 1753 - 1760.
  • 5W Liu, J Wang, R Ji, Y Jiang, and S F Chang. Supervised has- hing with kernels[ C]. CVPR, 2012.
  • 6J Wang, S Kumar, and S F Chang. Semi - supervised hashing for scalable image retrieval[ C ]. CVPR, 2010 : 3424 - 3431.
  • 7J Wang, S Kumar, and S Chang. Sequential Projection Learning for Hashing with Compact Codes [ C ]. In ICML, 2010:1127 - 1134.
  • 8J Song, Y Yang, Z Huang, H T Shen, R Hang. Multiple feature hashing for reahime large scale near - duplicate video retrieval [C]. in: ACM MM, 2011.
  • 9H J'egou, M Douze, C Sehmid, and P Perez. Aggregating local descriptors into a compact image representation [ C ]. CVPR, 2010.
  • 10Y Gong and S Lazebnik. Iterative Quantization: A Procrustean Approach to Learning Binary Codes[ C]. Proc. IEEE Conf. Com- puter Vision and Pattern Recognition, 2011.

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部