期刊文献+

一类不连续映射的边界碰撞分岔分析

Border Collision Bifurcation in a Class of Discontinuous Maps
下载PDF
导出
摘要 本文讨论一类分段非线性的不连续映射.首先通过数值仿真得到单参数的分岔图,发现该映射存在加周期序列和周期叠加序列.其次,分析了一个典型的周期n+1解及迭代表达式;并推导了映射RLn序列周期n+1解的边界碰撞分岔条件,通过数值仿真得到平面上RLn的周期区域全局分岔图.从而,我们验证该映射由于周期n+1解的边界碰撞分岔形成了加周期序列和周期叠加序列. A class of discontinuous piecewise nonlinear maps are considered in the current paper. First of all,one- parameter bifurcation diagrams are obtained by numerical simulations. Then it is found that the maps have periodic adding sequences and periodic stacking sequences. Secondly,the typical periodic n + 1 solutions and the iterative expressions are analyzed,and periodic n + 1solution conditions of border collision bifurcation in the RLnsequences are deduced. Hence,the periodic regional global diagram in the RLnplane is obtained by the numerical simulation. Finally,it is verified that the map has periodic adding sequences and periodic stacking sequences due to border collision bifurcations of periodic n + 1 solutions.
出处 《琼州学院学报》 2015年第5期6-9,共4页 Journal of Qiongzhou University
基金 国家自然科学基金项目(No.11372077)
关键词 不连续映射 周期n+1解 边界碰撞分岔 加周期序列 周期叠加序列 discontinuous maps periodic n + 1 solutions border collision bifurcations periodic adding series periodic stacking sequences
  • 相关文献

参考文献16

  • 1Nusse H E,Ott E,Yorke J A.Border-collision bifurcations:An explanation for observed bifurcation phenomena[J].Physical Review E,1994,49(2):1073.
  • 2Banerjee S,Grebogi C.Border collision bifurcations in two-dimensional piecewise smooth maps[J].Physical Review E,1999,59(4):4052.
  • 3Di Bernardo M,Feigin M I,Hogan S J,et al.Local analysis of C-bifurcations in n-dimensional piecewise-smooth dynamical systems[J].Chaos Solitons and Fractals,1999,10(11):1881-1908.
  • 4Gardini L,Tramontana F,Sushko I.Border collision bifurcations in one-dimensional linear-hyperbolic maps[J].Mathematics and Computers in Simulation,2010,81(4):899-914.
  • 5Sushko I,Gardini L.Degenerate bifurcations and border collisions in piecewise smooth 1D and 2D maps[J].International Journal of Bifurcation and Chaos,2010,20(7):2045-2070.
  • 6Avrutin V,Dutta P S,Schanz M,et al.Influence of a square-root singularity on the behaviour of piecewise smooth maps[J].Nonlinearity,2010,23(2):445-463.
  • 7Jain P,Banerjee S.Border-collision bifurcations in one-dimensional discontinuous maps[J].International Journal of Bifurcation and Chaos,2003,13(11):3341-3351.
  • 8Avrutin V,Schanz M,Banerjee S.Multi-parametric bifurcations in a piecewise–linear discontinuous map[J].Nonlinearity,2006,19(8):1875-1906.
  • 9Avrutin V,Schanz M.On multi-parametric bifurcations in a scalar piecewise-linear map[J].Nonlinearity,2006,19(3):531-552.
  • 10Tramontana F,Gardini L,Agliari A.Endogenous cycles in discontinuous growth models[J].Mathematics and Computers in Simulation,2011,81(8):1625-1639.

二级参考文献3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部