期刊文献+

基于LDA的多粒度主题情感混合模型 被引量:23

Multi-Grain Sentiment/Topic Model Based on LDA
下载PDF
导出
摘要 主题情感混合模型(Reverse-Joint Sentiment/Topic Model;Joint Sentiment/Topic Model)能够有效地同时抽取文档的主题和情感信息,在情感分析领域受到广泛的关注,因为没有考虑整体分布与局部分布的关系,导致分类效果不佳且不稳定.本文同时考虑两个粒度上的情感/主题分布——文档级和局部,提出多粒度的主题情感混合模型(MG-.R-JST;MG-JST).MG-R-JST/MG-JST、在文档级分布和局部分布的共同作用下生成单词的情感/主题;使用吉布斯采样进行模型推理,并给出了推理过程;在MR与MDS数据集上进行实验,实验结果表明本文算法分类效果优于主题情感混合模型,且稳定性更好. The topic and sentiment unification model (Reverse-Joint Sentiment/Topic Model;Joint Sentiment/Topic Model) can effectively extract information of topic and sentiment simultaneously and receives wide attention in the field of sentiment analy- sis,because it does not consider the relationship between the overall distribution and local distribution, so the classification perfor- mance is not good and stable. This paper proposed the multi-grain topic and sentiment unification model (MG-R-JST;MG-JST) by taking into account both grains on sentiment/topic distributiort---document-level and local-level.MG-R-JST/MG-JST generated the sentiment/topic of words on the effect of the document-level and local-level distribution, we used Gibbs sampling for model infer- ence and showed the process.Experiments on the dataset of MR and MDS demonstrate the effectiveness of the proposed method, and the classification performance is better and more stable than the topic and sentiment unification model.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第9期1875-1880,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61170092 No.61133011 No.61103091)
关键词 LDA 主题情感混合模型 情感分析 多粒度 LDA topic and sentiment unification model sentiment analysis multi-grain
  • 相关文献

参考文献11

  • 1赵妍妍,秦兵,刘挺.文本情感分析[J].软件学报,2010,21(8):1834-1848. 被引量:544
  • 2Bo Pang, Lillian Lee. Thumbs up? sentiment classification using machine learning techniques [ A ]. Proceedings of the Confer- ence on Empirical Methods in Natural Language Processing [ C]. Philadelphia PA: EMNLP, 2002.79 - 86.
  • 3Fangtao Li, et al. Sentiment analysis with global topics and lo- cal dependency[ A ]. Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence[ C]. Atlanta, USA: AAAI, 2010,1371 - 1376.
  • 4Blei D M, et al. Latent dirichlet allocation[ J ]. Journal of Ma- chine Leamin Research,2003,3(1) :993 - 1022.
  • 5江雨燕,李平,王清.基于共享背景主题的Labeled LDA模型[J].电子学报,2013,41(9):1794-1799. 被引量:17
  • 6王李冬,魏宝刚,袁杰.基于概率主题模型的文档聚类[J].电子学报,2012,40(11):2346-2350. 被引量:24
  • 7Pang B, Lee L. Opinion mining and sentiment analysis [ J ]. Foundations and Trends in Information Retrieval, 2008,2 (1 - 2) : 1 - 135.
  • 8Chenghua Lin, Yulan He.Joint sentiment/topic model for senti- ment analysis [ A ]. CKIM [ C ]. Hong Kong, China: ACM, 2009.375 - 384.
  • 9Chenghua Lin, Yulan He, Richard Everson. A comparative study of bayesian models for unsupervised senfiment[ A]. Pro- ceedings of the Fourteenth Conference on Computational Natu- ral Language Learning [ C]. Uppsala, Sweden: Association for computational linguistics,2010,144- 152.
  • 10YulanHe, et al. Dynamic joint sentiment-topic model [ J]. ACM Transactions on Intelligent Systems and Technology (TIST) ,2013,5(1):6.

二级参考文献30

  • 1朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:326
  • 2Shehata S,et al. An efficient concept-based mining model for enhancing text clustering[ J]. IEEE Transactions on Knowledge and Data Engineering,2010,22(10) : 1360 - 1371.
  • 3Andrzejewski D, Buttler D. Latent topic feedback for informa- tion relrieval[ A ]. Proceedings of 17th ACM SIGKDD Interna- tional Conference on Knowledge Discovery and Data Mining (KDD) [ C] .New York: ACM press,2011.600- 608.
  • 4Wang X, et al. Topical N-grams:Phrase and topic discovery, with an application to information retrieval[ A]. Proc of the 7th IEEE. International Conference on Data Mining [ C ]. Omaha, Nebraska, USA, 2007.697 - 702.
  • 5Heinrich G. Parameter estimation for text analysis[ Z/OL]. http://www, arbylon, net/publications/text-est, pdf, 2005.
  • 6Ramage D, Heymann P. Clustering the tagged web[ A] .Proc of the Second ACM International Conference on Web Search and Data Mining[ C]. Barcelona, Spain,2009.54- 63.
  • 7Frey B J, Dueck D. Clustering by passing messages between data points[ J]. Science,2007,315(5814) :972- 976.
  • 8Newman D,Noh Y, Tally E. Evaluating topic models for digi- tal libraries[ A] .Proc of JCDL[ C]. Gold Coast, Queensland, Australia, 2010.215 - 224.
  • 9Blei D M,Ng A Y,Jordan M I. Latent Dirichlet allocationJ J}. Machine Learning Research,2003,3:993 - 1022.
  • 10LaffertyJ D, Blei MD. Correlated topic models[AJ . Advances in Neural. Information Processing Systems, Proceedings of the 200'5 Cooferencel C]. Vancouver: Bradford Books,2IDU47 -155.

共引文献580

同被引文献179

引证文献23

二级引证文献281

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部