期刊文献+

分数阶扩散方程的加权隐式差分格式

A Weighted Implicit Difference Scheme for the Fractional Diffusion Equation
下载PDF
导出
摘要 文章利用有限差分的加权隐式格式,构造空间分数阶扩散方程的一个新的加权隐式差分格式,其相应的系数矩阵是严格对角占优的.证明了此格式算法是稳定的,并通过数值算例验证算法的有效性. This paper givers a weighted implicit difference scheme for solving space fractional diffusion equation by the weighted implicit scheme. The coefficient matrix is strictly diagonal dominance. Stability of the method is proved. The numerical example is showed to testify the efficiency of the numerical scheme.
作者 陈跃辉
出处 《闽南师范大学学报(自然科学版)》 2015年第3期1-5,共5页 Journal of Minnan Normal University:Natural Science
基金 福建省自然科学基金项目(2015J01018)
关键词 分数阶 扩散方程 有限差分法 加权隐式格式 fractional order diffusion equation finite difference method weighted implicit scheme
  • 相关文献

参考文献8

  • 1G.H. Golub, C.F. Van Loan. Matrix Computations(third ed.)[M]. Baltimore and London: Johns Hopkings University Press, 1996.
  • 2Podlubny I. Fractional Differential Equations[M]. San Diego: Acdemic Press, 1999.
  • 3郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 4Li C P, Chen A, Ye J J. Numerical approaches to fractional calculus and fractional ordinary differential equation[J]. Journal of Computational Physics, 201,230(9): 3352-3368.
  • 5郭建,李常品,丁恒飞.空间四阶的时间亚扩散方程的有限差分方法[J].应用数学与计算数学学报,2014,28(1):96-108. 被引量:2
  • 6王自强,曹俊英.分数阶扩散方程的一个新的高阶数值格式[J].数学的实践与认识,2015,45(6):315-320. 被引量:1
  • 7陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2007:82.
  • 8Chen Y H, Yu C Y. A new algorithm for computing the inverse and the determinant of a Hessenberg matrix[J]. Applied Mathe- matics and Computation, 2011, (218): 4433-4436.

二级参考文献27

  • 1郭柏灵,蒲学科,黄凤辉.分数阶偏微分方程及其数值解[M].北京:科学出版社,2011.
  • 2陆金甫,关治.偏微分方程数值解法[M].北京:清华大学出版社,2007:82.
  • 3Podlubny I.Fractional Differential Equations[M].San Diego:Academic Press,1999.
  • 4Metzler R,Klafter J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339(1):1-77.
  • 5Diethelm K,Ford N J,Freed A D.A predictor-corrector approach for the numerical solution of fractional differential equations[J].Nonlinear Dynamics,2002,29:3-22.
  • 6Li C P,Chen A,Ye J J.Numerical approaches to fractional calculus and fractional ordinary differential equation[J].Journal of Computational Physics,2011,230(9):3352-3368.
  • 7Chen C M,Liu F,Turner I,Anh V.A Fourier method for the fractional diffusion equation describing sub-diffusion[J].Journal of Computational Physics,2007,227(2):886-897.
  • 8Yuste S B.Weighted average finite difference methods for fractional diffusion equations[J].Journal of Computational Physics,2006,216(1):264-274.
  • 9Cui M R.Compact finite difference method for the fractional diffusion equation[J].Journal of Computational Physics,2009,228(20):7792-7804.
  • 10Meerschaert M M,Tadjeran C.Finite difference approximations for two-sided space fractional partial differential equations[J].Applied Numerical Mathematics,2006,56(1):80-90.

共引文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部