期刊文献+

基于端元提取的高光谱异常目标检测 被引量:1

Anomaly Detection Algorithm Based on Endmember Extraction in Hyperspectral Imagery
下载PDF
导出
摘要 针对高光谱图像混合像元影响异常检测效果的问题,提出了一种基于端元提取的异常检测算法。该算法采用小波分解,将原始高光谱图像分解为高频信息图像和低频信息图像,舍弃低频信息图像,只利用高频信息图像,从而抑制了背景,突出了目标;然后使用正交子空间投影(OSP)方法提取图像的端元光谱;最后根据提取的端元光谱,采用光谱角匹配(SAM)技术完成高光谱图像的异常检测。为了验证本文方法的有效性,利用AVIRIS高光谱数据进行了仿真实验,取得了较好的检测效果。与其他算法相比,结果表明,本文算法的检测性能明显优于传统算法,既降低了虚警率,又大大缩短了计算时间,适用于实时的高光谱图像异常目标检测。 In order to overcome the bad influence caused by mixed pixels in hyperspectral anomaly detection, a new target detection algorithm based on endmember extraction method is proposed. Hyperspectral imagery is decomposed into high frequency and low frequency images by wavelet decomposition firstly. High frequency images used only and sight of low frequency images abandoned, background information is effectively suppressed and anomaly targets become obvious consequently. And then the endmember spectral profile is got from high frequency images by Orthogonal Subspace Projection(OSP) algorithm. At last, anomaly detection is done by Spectral Angle Mapping(SAM) in the light of extracted endmember spectra. The proposed algorithm is studied using real hyperspectral data, and good detection effect is obtained. The results show that the proposed method which needs less time and has lower false alarm rate is proved to be better than the traditional algorithm, thus it is suitable for real-time anomaly detection in hyperspectral imagery.
机构地区 空军航空大学
出处 《红外技术》 CSCD 北大核心 2015年第10期836-841,共6页 Infrared Technology
基金 吉林省科技发展计划资助项目 编号:20140101213JC 全军军事学研究生课题项目 编号:2011JY002-534
关键词 高光谱图像 异常检测 端元提取 小波分解 正交子空间投影 hyperspectral imagery anomaly detection endmember extraction wavelet decomposition orthogonal subspace projection
  • 相关文献

参考文献12

  • 1Reed I S,Yu X.Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J].Acoustics,Speech and Signal Processing,IEEE Transactions on,1990,38(10):1760-1770.
  • 2Molero J M,Paz A,Garzón E M,et al.Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters[J].The Journal of Supercomputing,2011,58(3):411-419.
  • 3史振威,吴俊,杨硕,姜志国.RX及其变种在高光谱图像中的异常检测[J].红外与激光工程,2012,41(3):796-802. 被引量:20
  • 4Kwon H,Nasrabadi N M.Kernel RX-algorithm:a nonlinear anomaly detector for hyperspectral imagery[J].IEEE Transactions,Geoscience and Remote Sensing,2005,43(2):388-397.
  • 5曹海霞,巴音贺希格,崔继承,张永超.基于图像复原的高光谱图像前向像移补偿[J].中国光学,2013,6(6):856-862. 被引量:5
  • 6陈刚,陈小梅,李婷,倪国强.基于小波分解的光谱特征提取算法研究[J].光谱学与光谱分析,2010,30(11):3027-3030. 被引量:11
  • 7Li H,Zhang L.A hybrid automatic endmember extraction algorithm based on a local window[J].IEEE Transactions,Geoscience and Remote Sensing,2011,49(11):4223-4238.
  • 8Li H,Lee W S,Wang R,et al.Spectral angle mapper(SAM)based citrus greening disease detection using airborne hyperspectral imaging[J].International Conference on Precision Agriculture,Indianapolis,2012:15-18.
  • 9Johnson R J,Williams J P,Bauer K W.Autogad:An improved ICA-based hyperspectral anomaly detection algorithm[J].Geoscience and Remote Sensing,IEEE Transactions on,2013,51(6):3492-3503.
  • 10Khazai S,Safari A,Mojaradi B,et al.An approach for subpixel anomaly detection in hyperspectral images[J].Selected Topics in Applied Earth Observations and Remote Sensing,IEEE Journal of,2013,6(2):769-778.

二级参考文献41

共引文献42

同被引文献12

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部