期刊文献+

基于稀疏傅里叶变换的低采样率宽带频谱感知 被引量:14

Wideband spectrum sensing at low sampling rate based on the sparse Fourier transform
下载PDF
导出
摘要 针对传统频谱感知方法应用于宽带频谱感知时存在采样率过高的现象,提出一种基于稀疏傅里叶变换的采用奈奎斯特采样进行宽带信号频谱感知的方法。该算法在频谱分布稀疏时具有极低的误判率,并在频谱占用率增加时,提出了改进的算法,最后利用MATLAB仿真验证了稀疏傅里叶变换用于宽带频谱感知方案的可行性。相比传统方法,本文的频谱感知方案需要的采样率仅为奈奎斯特采样率的20%。 Because the sampling rate is too high in the traditional spectrum sensing method, this paper propose a wideband signal spectrum sensing method based on the sparse Fourier transform using sub-Nyquist sampling rate. This algorithm has a very low rate of false positives when spectrum is sparse, and a modified solution is proposed even if the spectrum occupancy increases. MATLAB simulation verified the feasibility of wideband spectrum sensing scheme. Compared to the traditional method, the sampling rate that spectrum sensing based on the sparse Fourier transform required is 20% of the Nyquist sampling rate.
出处 《电子技术应用》 北大核心 2015年第11期85-88,共4页 Application of Electronic Technique
基金 上海市自然科学基金(15ZR1447600) 国家高技术研究发展计划(863计划)(SS2015AA011307)
关键词 宽带 频谱感知 稀疏傅里叶变换 奈奎斯特采样 wideband spectrum sensing sparse Fourier Transform sub-Nyquist sampling
  • 相关文献

参考文献6

  • 1Mishali Moshe , Eldar Yonina C. Wideband spectrum sensingat sub - nyquist rates [J]. IEEE Signal Processing Magazine ,2011,28(4):102-135.
  • 2盖建新,付平,乔家庆,孟升卫.用于宽带频谱感知的全盲亚奈奎斯特采样方法[J].电子与信息学报,2012,34(2):361-367. 被引量:5
  • 3Ahmad B I, Al-Ani M , Tarczynski A , et al - Compressiveand non - compressive reliable wideband spectrum sensing atsub-Nyquist rates[C].Signai Processing Gonference(EUSIPCO),2013 Proceedings of the 21st European IEEE ,2013 : 1-5.
  • 4HASSANIEH H , SHI L, ABARI 0 , et al.GHz-wide sensingand decoding using the sparse Fourier transform[G].INFOCOM , 2014 Proceedings IEEE , 2014 : 2256-2264.
  • 5RAMOS S , FEUOO C,GOMEZ-BARROSO J L.Next gen-eration mobile network deployment strategies [ J ]. Journal ofthe Institute of Telecommunications Professionals,2009,3(1):13-19.
  • 6GOGGIN G. Adapting the mobile phone : the iPhone and itsconsumption[J]. Continuum: Journal of Media & CulturalStudies,2009,23(2) : 231-244.

二级参考文献14

  • 1Taherpour A, Gazor S, and Nasiri-Kenari M. Wideband spectrum sensing in unknown white Gaussian noise[J]. IET Communications, 2008, 2(6): 763-771.
  • 2Hwang C H, Lai G L, and Chen S C. Spectrum sensing in wideband OFDM cognitive radios[J]. IEEE Transactions on Signal Processing: 2010, 58(2): 709-719.
  • 3Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 4Baraniuk R. Compressive sensing[J]. IEEE Signal Processin9 Magazine, 2007, 24(4): 118-121.
  • 5Polo Y L, Wang Y, Pandharipande A, et al.. Compressive wide-band spectrum sensing[C]. IEEE Int. Conf. on Acoustics Speech, and Signal Processing (ICASSP), Talpei, China, April 2009: 2337-2340.
  • 6Yu Z Z, Chen X, Hoyos S, et al.. Mixed-signal parallel compressive spectrum sensing for cognitive radios[J]. International Journal of Digital Multimedia Broadcasting, 2010, 2010: 1-10.
  • 7Tian Z and Giannakis G B. Compressed sensing for wideband cognitive radios[C]. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Honolulu, HI, April 2007, 4: IV-1357-IV-1360.
  • 8Mishali M and Eldar Y C. From theory to practice: sub-Nyquist sampling of sparse wideband analog signals[J]. IEEE Journal of Selected Topics in Signal Processing, 2010, 4(2): 375-391.
  • 9Mishali M and Eldar Y C. Reduce and boost: recovering arbitrary sets of jointly sparse vectors[JI. IEEE Transactions on Signal Processing, 2008, 56(10): 4692-4702.
  • 10Cotter F S, Rao D B, Engan K, et al.. Sparse solutions to linear inverse problems with multiple measurement vectors[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2477-2488.

共引文献4

同被引文献74

引证文献14

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部