期刊文献+

基于贝叶斯网络的车辆换道模型 被引量:25

A Lane Change Model Based on Bayesian Networks
下载PDF
导出
摘要 车辆换道行为是微观交通流中最基本的驾驶行为之一,研究车辆换道行为可以提高车辆换道模型的仿真精度和减少由不合适的车辆换道行为引发的交通事故.当前车辆换道模型大多是基于驾驶员的决策思维方式建立的决策模型,这类模型的缺点是很难捕捉到驾驶员在决策过程中一些潜在决策模式和考虑的影响因素.鉴于此,本文引入了一种典型的人工智能方法——贝叶斯网络,建立了一个全新的车辆换道模型,试图通过机器学习的途径来提高车辆换道模型的精度.采用了分段离散化的方法对数据进行预处理,然后使用处理后的数据对贝叶斯网络的结构和参数进行学习,并分别建立了与两种贝叶斯网络结构相对应的车辆换道模型,最后对建立的模型分别进行验证.模型的验证结果表明,建立的基于贝叶斯网络的车辆换道模型对换道行为的识别率可以达到88%以上.此模型还可进一步应用到驾驶员辅助系统的开发中. Lane change behavior is one of the most foundational driving behaviors in microscopic traffic flow. Researching the lane change behavior contributes to improving the simulation accuracy of lane change models and reducing traffic accidents caused by improper lane change behavior. The current lane change model is the decision model mostly based on the way of driver's thinking. The shortcoming of current models is difficult to catch certain potential decision-making model and influencing factors in the driver's decisionmaking process. In view of this, this paper introduces a typical artificial intelligence method, Bayesian networks, to establish a new lane change model, and tries to improve the accuracy of the lane change model by machine learning. It uses a segmented discrete method to preprocess vehicle trajectory measurement data,and uses the processed data to training and verification this model. The verification results show that, this model's recognition rate to lane change behavior can reach more than 88%. In addition, this model can be further applied to the development of a driver assistance system.
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第5期67-73,95,共8页 Journal of Transportation Systems Engineering and Information Technology
基金 国家自然科学基金(51278429 51408509) 四川省科技厅项目(2013GZX0167 2014ZR0091) 中央高校基本业务经费(SWJTU11CX080) 成都市科技局项目(2014-RK00-00056-ZF 2014-RK00-00072-ZF)
关键词 公路运输 贝叶斯网络 机器学习 车辆换道 特征离散 highway transportation Bayesian networks machine learning lane change characteristic discretization
  • 相关文献

参考文献15

  • 1龙小强,谭云龙.微观仿真自主性车道变换模型[J].公路交通科技,2012,29(11):115-119. 被引量:7
  • 2Ahmed KI. Modeling drivers’acceleration and lane changing behavior[D]. Massachusetts Institute of Technology, 1999.
  • 3Zhang Y, Owen L E, Clark J E. A Multi- regime approach for microscopic traffic simulation[C]. Transportation Research Board 77th Annual Meeting. Washington, D. C: Transportation Research Board, 1998: 103-115.
  • 4Wei H, Lee J. Observation-based lane-vehicleassignment hierarchy for microscopic simulation on an urban street network[C]. Transportation Research Board 79th Annual Meeting. Washington , D. C: Transportation Research Board, 2000: 96-103.
  • 5Tomer T. Integrated driving behavior modeling[D]. Cambridge, MA: Massachusetts Institute of Technology, 2003: 18-43.
  • 6Yang Q, Koutsopoulos H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(3): 113-129.
  • 7智永锋,张骏,史忠科.高速公路加速车道长度设计与车辆汇入模型研究[J].中国公路学报,2009,22(2):93-97. 被引量:17
  • 8王荣本,游峰,崔高健,余天宏.车辆安全换道分析[J].吉林大学学报(工学版),2005,35(2):179-182. 被引量:40
  • 9Hidas P. Modeling vehicle interactions in microscopic simulation of merging and weaving and weavin[J]. Transportation Research Part C: Emerging Technologies, 2005, 13(1): 37-62.
  • 10Toledo T, Koutsopoulos H N, Ben-Akiva M. Integrated driving behavior modeling[J]. Transportation Research Part C: Emerging Technologies, 2007, 15(2): 96-112.

二级参考文献79

  • 1李文权,王莉,王炜.高速公路上匝道合流区通行能力经验模型[J].交通运输工程学报,2004,4(2):80-84. 被引量:28
  • 2马雷,王荣本.智能车辆导航控制技术[J].吉林大学学报(工学版),2004,34(4):582-586. 被引量:19
  • 3李娟.相关系数法在通道交通需求预测中的应用[J].中国公路学报,2006,19(5):98-101. 被引量:12
  • 4BUNKER J M,TROUTBECK R J. The Probability of Delay to Minor Stream Drivers at a Limited Priority Freeway Merge [J]. Road and Transport Research, 1996,5(1) : 16-25.
  • 5EVANS J L, ELEFTERIADOU L. Probability of Breakdown at Freeway Merges Using Markov Chains [J]. Transportation Research Part B, 2001,35 (3) : 237-254.
  • 6YAGODA H N. The Dynamic Control of Automotive Traffic at a Freeway Entrance Ramp[J]. Automatica, 1970,6(3) :385-393.
  • 7ARUNABHA B,MARTIN V M. Modeling and Esti mation of Traffic Flow-a Martingale Approach[J]. International Journal of Systems Science, 1980, 11 (4) :429-444.
  • 8BARAS J, LEVINE W, TAHSIN L. Discrete-time Point Processes in Urban Traffic Queue Estimation [J]. IEEE Tran Automatic Control, 1979,24 ( 1 ) : 12- 27.
  • 9郭嗣宗 陈刚.信息科学中的软计算方法[M].沈阳:东北大学出版社,2001.11.
  • 10BASCUNANA Jose L.Analysis of Lane Change Crash Avoidance[C]∥SAE Paper 951895.

共引文献87

同被引文献168

引证文献25

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部