期刊文献+

基于局部权重k-近质心近邻算法 被引量:2

Local weight-based k-nearest centroid neighbor algorithm
下载PDF
导出
摘要 k-近质心近邻原则是k-近邻原则的一种有效扩展,是有效的模式分类方法之一。k-近质心近邻原则容易受到局外点的影响;同时,所有的k-近质心近邻点在分类决策时具有相同的权重和分类贡献率,这显然是不合理的。为了解决这一问题,考虑到质心近邻在模式分类问题上具有近邻特性和空间分布特性,提出一种基于局部权重的近质心近邻算法,实验结果表明该LWKNCN算法在分类精度上优于传统的KNN算法和KNCN算法。 The k-nearest centroid neighbor rule (KNCN), as an effective extension of the k-Nearest Neighbor rule( KNN), is one of the effective algorithms in pattern classification. The KNCN is prone to be seriously influenced bythe existing outliers. At the same time, all the k-nearest centroid neighbor samples have the same weight and thesame contribution to classification results, which is unreasonable. To solve this problem, this paper proposes a nea-rest centroid neighbor algorithm based on the local weight, taking account of the proximity and spatial distributioncharacteristics of the neighbors for a query pattern. The experimental results show that the classification accuracy ofLWKNCN is better than that of the traditional KNN algorithm and KNCN algorithm.
出处 《应用科技》 CAS 2015年第5期10-13,共4页 Applied Science and Technology
基金 黑龙江省自然科学基金资助项目(F201339)
关键词 模式分类 近邻原则 K-近邻 k-近质心近邻 局部权重 pattern classification nearest neighbor rule k-nearest neighbor rule k-nearest centroid neighbor rule local weight
  • 相关文献

参考文献12

  • 1奉国和.自动文本分类技术研究[J].情报杂志,2007,26(12):108-111. 被引量:12
  • 2COVER T, HART P. Nearest neighbor pattern classification[ J ]. IEEE Transactions on Information Theory, 1967, 13(1) : 21-27.
  • 3LI Juan. TKNN: an improved KNN algorithm based on tree structure [ C ]//2011 Seventh International Conference on Computational Intelligence and Security (CIS). Sanya, Chi- na, 2011: 1390-1394.
  • 4WEINBERGER K Q, SAUL L K. Distance metric learning for large margin nearest neighbor classification[ J]. The Jour- nal of Machine Learning Research, 2009 (10) : 207-244.
  • 5DUDANI S A. The distance-weighted k-nearest-neighbor rule[ J ]. IEEE Transactions on Systems, Man, and Cyber- netics, 1976, SMC-6(4) : 325-327.
  • 6ZENG Yong, YANG Yupu, ZHAO Liang. Pseudo nearest neighbor rule for pattern classification [ J ]. Expert Systems with Applications, 2009, 36(2): 3587-3595.
  • 7WANG B, ZENG Yong, YANG Yupu. Generalized nearest neighbor rule for pattern classification [ C ]// 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008: 8465-8470.
  • 8MrrANI Y, HAMAMOTO Y. A local rrean-based nenparametfic classifier[J]. Pattern Recognition I_ettets, 2115, 27(10): 1151-1159.
  • 9S_NCHEZ J S, PLA F, FERRI F J. On the use of neigh- bourhood-based non-parametric classifiers [ J ]. Pattern Rec- ognition Letters, 1997, 18(11/12/13): 1179-1186.
  • 10SNCHEZ J S, MARQUIS A I. Enhanced neighbourhood specifications for pattern classification[ M]//Chen Deehang, Cheng Xiuzhen. Pattern recognition and String Matching. [ S. 1.]: Springer-Verlag US, 2002: 673-702.

二级参考文献42

共引文献16

同被引文献14

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部