期刊文献+

间歇工作的空间斯特林制冷机制冷时长预测 被引量:1

Prediction of the intermittent functioning Stirling cryocooler's duration of cryogen
下载PDF
导出
摘要 针对空间遥感任务中,光电探测器配载的斯特林制冷机制冷时长的预测问题,提出了一种使用自回归积分滑动平均模型(ARIMA)与人工神经网络(ANN)模型相结合的预测方法。该方法采用时间序列的经典模型,将时间序列分解为趋势项与波动项的加和,采用ARIMA和ANN模型分别进行趋势项预测和波动项预测,并根据斯特林制冷机的间歇性工作模式特点对ARIMA模型进行改进。最后,通过在真实数据上与其他方法的对比实验,验证了本文提出方法的有效性。 A new method combining autoregressive integratedmoving average (ARIMA) model and artificial neuralnetwork (ANN) model is presented for the duration prediction of the Stifling cryocooler applied in space remotesensing missions. The stirling cryocooler is equipped with electrophotonic detector. A classic model based on timeseries is used to decompose the time series into trend item and oscillation item. For prediction, ARIMA model isused to predict the trend item and ANN model is used to predict the oscillation item, while ARIMA model is im-proved based on the intermittent workingmode of the Stifling cryocooler. Finally,the validity of this method is veil-fled by applying to the real data and comparing the resuhs with other methods.
出处 《应用科技》 CAS 2015年第5期61-66,共6页 Applied Science and Technology
基金 载人航天空间应用任务地面支持项目(Y2140411SN)
关键词 空间遥感 斯特林制冷机 制冷时长 ARIMA模型 ANN模型 remote sensing Stifling cryocooler duration of cryogen ARIMA model ANN model
  • 相关文献

参考文献11

二级参考文献54

  • 1许少华,何新贵.基于函数正交基展开的过程神经网络学习算法[J].计算机学报,2004,27(5):645-650. 被引量:73
  • 2李爱国,覃征.在线分割时间序列数据[J].软件学报,2004,15(11):1671-1679. 被引量:27
  • 3李敏,蒋维楣,李昕,浦一芬.大气边界层湍流的动力非平稳性的验证[J].地球物理学报,2005,48(3):493-500. 被引量:11
  • 4李超,闫春杰,霍英杰,施宝毅.斯特林制冷机真空环境热模拟试验研究[J].真空与低温,2006,12(2):108-111. 被引量:2
  • 5贝达特JS 凌福根等(译).随机数据分析方法[M].北京:国防工业出版社,1976.72-24.
  • 6Specht D F. A general regression neural network. IEEE Transactions on Neural Networks, 1991,2(6) :568~576.
  • 7Tomandl D, Schober A. A modified general regression neuralnetwork (MGRNN) with new, efficient trainingalgorithms as a robust 'black box'-tool for data analysis. Neural Networks,2001,14(4) : 1023~1034.
  • 8Chtioui Y, Panigrahi S,Francl L. A generalized regression neural network and its application for leaf wentness prediction to forecast plant disease. Chemometrics and Intelligent Laboratory Systems, 1999,48 (1) : 47~58.
  • 9Leung M T,Chen A S,Daouk H. Forecasting exchange rates using general regression neural networks. Computers & Operation Research,2000,27(4) : 1093~1110.
  • 10Specht D F,Romsdahl H. Experience with adaptive probabilistic neural networks and adaptive general regression neural networks, In:Proceedings of the IEEE World Congress on Computational Intelligence, 1994,2:1203~1208.

共引文献370

同被引文献7

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部