期刊文献+

一种应用精英混沌搜索的函数优化算法 被引量:3

An enhanced function optimization algorithm based on elite chaotic search
下载PDF
导出
摘要 针对基本FPA算法在求解复杂工程优化问题时存在收敛速度慢的缺点,提出应用精英混沌搜索的花粉授粉算法(CSFPA).CSFPA算法在搜索过程中从当前种群中随机选择出一个个体,对其执行精英混沌搜索操作,从而加快算法的收敛速度.将提出的CSFPA算法与基本FPA算法在几个国际上常用的基准测试问题上进行了比较实验,实验结果表明CSFPA算法能够在大多数测试问题上比基本FPA算法获得更优的结果. Flower pollination algorithm (FPA) is an emerging function optimization algorithm. However, the traditional FPA tends to suffer from slow convergence when solving complex engineering optimization problems. Aiming at this weakness of the basic FPA, an enhanced flower pollination algorithm based on elite chaotic search (CSFPA) is proposed in this paper. In the evolution process, CSFPA randomly selects an individual to execute the elite chaotic search strategy, which can accelerate the convergence speed. In the experiments, the proposed CSFPA is compared with the basic FPA on several benchmark test problems. The experimental results validate the effectiveness of the proposed CSFPA.
出处 《江西理工大学学报》 CAS 2015年第5期74-79,共6页 Journal of Jiangxi University of Science and Technology
基金 江西省青年科学家(井冈之星)培养对象资助项目(20153BCB23010)
关键词 优化算法 演化算法 混沌搜索 花粉授粉算法 optimization algorithm evolutionary algorithm chaotic search flower pollination algorithm
  • 相关文献

参考文献18

  • 1Yang X S. Flower pollination algorithm for global optimization[M].Unconventional Computation and Natural Computation, Lecture Notes in Computer Science, 2012:240-249.
  • 2Yang X S, Karamanoglu M, He X. Flower pollination algorithm: a novel approach for multiobjeetive optimization [J]. Engineering Optimization, 2014, 46(9): 1222-1237.
  • 3Wang R, Zhou Y. Flower Pollination Algorithm with Dimension by Dimension Improvement[J]. Mathematical Problems in Engineering, 2014: 481791.
  • 4Prathiba R, Moses M B, Sakthivel S. Flower pollination algorithm applied for different economic load dispatch problems [J]. International Journal of Engineering and Technology, 2014, 6(2): 1009-1016.
  • 5Abdel-Raouf O, Abdel-Baset M, El-henawy I. A new hybrid flower pollination algorithm for solving constrained global optimization problems [J]. International Journal of Applied Operational Research, 2014, 4(2): 1-13.
  • 6Chakraborty D, Saha S, Dutta O. DE-FPA: A hybrid differential evolution-flower pollination algorithm for function minimization[C] //International Conference on High Performance Computing and Applications, Bhubaneswar, India, 2014.
  • 7Rodrigues D, Yang X S, de Souza A N, et ai. Binary flower pollination algorithm and its application to feature selection [M]. Recent Advances in Swarm Intelligence and Evolutionary Computation. Springer, 2015: 85-100.
  • 8Dubey H M, Pandit M, Panigrahi B K. A biologically inspired modified flower pollination algorithm for solving economic dispatch problems in modem power systems [J]. Cognitive Computation, 2015,7(5) : 594-608.
  • 9肖辉辉,万常选,段艳明,钟青.基于模拟退火的花朵授粉优化算法[J].计算机应用,2015,35(4):1062-1066. 被引量:22
  • 10肖辉辉,万常选,段艳明.一种基于复合形法的花朵授粉算法[J].小型微型计算机系统,2015,36(6):1373-1378. 被引量:12

二级参考文献75

  • 1陈发来,杨武.区间算法在吴消元法解代数方程组中的应用[J].中国科学(A辑),2005,35(8):910-921. 被引量:4
  • 2张建科,王晓智,刘三阳,张晓清.求解非线性方程及方程组的粒子群算法[J].计算机工程与应用,2006,42(7):56-58. 被引量:37
  • 3邵信光,杨慧中,陈刚.基于粒子群优化算法的支持向量机参数选择及其应用[J].控制理论与应用,2006,23(5):740-743. 被引量:128
  • 4Kennedy J,Eberhart R C.Particle swarm optimization[C].IEEE Int Conf on Neural Networks.Perth,1995:1942-1948.
  • 5Zhao S Z,Liang J J,Suganthan P N.Dynamic multi-swarmparticle swarm optimizer with local search for large scaleglobal optimization[C].Proc of 2008 IEEE Congress onEvolutionary Computation.Hong Kong:IEEE Press,2008:3845-3852.
  • 6Fan S S,Zahara E.A hybrid simplex search and particleswarm optimization for unconstrained optimization[J].European J of Operational Research,2007,181(2):527-548.
  • 7Chang Y P.Integration of SQP and PSO for optimalplanning of harmonic filters[J].Expert Systems withApplications,2010,37(3):2522-2530.
  • 8He Y Y,Zhou J Z,Xiang X Q,et al.Comparison ofdifferent chaotic maps in particle swarm optimizationalgorithm for long-term cascaded hydroelectric systemscheduling[J].Chaos,Solitons and Fractals,2009,42(5):510-518.
  • 9Xiang T,Liao X F,Wong K W.An improved particle swarmoptimization algorithm combined with piecewise linearchaotic map[J].Applied Mathematics and Computation,2007,190(2):1637-1645.
  • 10Zhao X C.A perturbed particle swarm algorithm fornumerical optimization[J].Applied Soft Computing,2010,10(1):119–124.

共引文献75

同被引文献47

  • 1Garey M R, Johnson D S. Computers and intractability: A guide to the theory of NPcompleteness[M]. San Francisco: W. H. Freeman Eds, 1979.
  • 2Fujie T. An exact algorithm for the maximum leaf spanning tree problem[J]. Computers & Operations Research, 2003, 30(13): 1931- 1944.
  • 3Kratsch S, Lehre P K, Neumann F, et al. Fixed parameter evolutionary algorithms and maximum Leaf spanning tree A matter of mutation[C]/ Proceedings of Parallel Problem Solving from Nature-(PPSN X1), volume 6238 of LNCS, Springer Berlin/Heidelberg, 201 I: 204-213.
  • 4Lu Hsueh-I, Ravi R. The power of local optimization: Approximation algorithms for maximum leaf spanning tree [C]// Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, 1992: 533-542.
  • 5Lu Hsueh-I, Ravi R. The power of local optimizations: Approximation algorithms for maximum leaf spanning tree (DRAFI')* [R]. Technical Report CS--96-05, Brown University, 1996.
  • 6Lu Hsueh-I, Ravi R. A near-linear-time approximation algorithm for maximum-leaf spanning tree[R]. Technical Report CS-96-06, Brown University, 1996.
  • 7Lu Hsueh-I, Ravi R. Approximating maximum leaf spanning trees in almost linear time[J]. Journal of Algorithms, 1998, 9(1):132-141.
  • 8Roberto Solis-Oba. 2-approximation algorithm for finding a spanning tree with maximum number of leaves [C]//In algorithms, ESA, volume 1461 of LNCS, Springer, Berlin, 1998: 441-452.
  • 9Bonsma P, Zickfeld F. A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs[C]//In Proceedings of the 8th Symposium on Latin American Theoretical Infonnatics (LATIN), vol. 4957 of LNCS, Springer, 2008: 531-543.
  • 10Kleitman D J, West D B. Spanning trees with many leaves [J].SIAM Journal on Discrete Mathematics, 1991, 4(1):99-106.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部