期刊文献+

基于区域划分的红外超分辨率重建 被引量:7

Infrared super resolution reconstruction based on region division
下载PDF
导出
摘要 提出了红外超分辨率重建系统以获取高分辨率红外数据。首先,根据红外图像获取过程建立了数学模型,讨论了降采样、模糊、运动以及高斯噪声对红外系统的影响;在非退化特征提取的基础上提出了基于特征的亚像素配准算法,其根据所得到的非退化特征应用归一化均方根误差来估计两帧之间的亚像素位移。然后,分析了传统全变分因子在高分辨重建时的不足并对其进行改进;利用区域划分将图像划分为平滑区域和细节区域,并根据区域的不同情况自适应全变分因子,从而使细节区域不至于过平滑。最后,利用MM(Majorization Minimixation)算法对合成的低分辨率红外图像和真实红外图像进行了超锐度重建。与同类相关算法的比较实验显示:所提算法亚像素配准最大误差为0.09pixel,重建后的红外图像质量优于其他同类算法。所提算法可以对低分辨红外图像序列进行有效重建,具有配准精度高、重建图像细节丰富等特点,可应用于各种红外成像系统。 An infrared super resolution reconstruction system was proposed to acquire high resolution infrared images.A mathematical model was established according to the procedure of image acquisition.The effect of down-sampling,blurring,motion,and Gussian noise on the infrared system were discussed.Then,a non-degradation feature based sub-pixel motion estimation method was proposed.On the basis of obtained non-degradation,the normalized root of mean square was utilized to estimate the sub-pixel motion between two frames.Furthermore,drawbacks of the conventional total variation factor were analyzed and improved when it was applied in the reconstruction procedure.The region division method was used to divide the image into smooth regions and detail regions,then the new variational factor was able to adaptive to different regions according to their characteristics,and the detail regions could not be over-smoothed.Finally,the experiments on both synthetic and real infrared image sequences were performed by MM(Majorization Minimization).The results indicate that the maximum error of proposed algorithm is 0.09 pixel and the quality of the reconstructed image is better than those of the other algorithms.The proposed algorithm has higher sub-pixel registration accuracyand rich image details,and is able to reconstruct the sequence of low resolution infrared images efficiently.It is suitable for various infrared applications.
出处 《光学精密工程》 EI CAS CSCD 北大核心 2015年第10期2989-2996,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.61171155 No.61571364) 陕西省自然科学基金资助项目(No.2012JM8010)
关键词 分辨率增强 红外图像 超分辨率重建 亚像素 全变分 resolution enhancement infrared image super resolution reconstruction sub-pixel total variation
  • 相关文献

参考文献21

二级参考文献105

共引文献120

同被引文献62

  • 1卜莎莎,章毓晋.基于局部约束线性编码的单帧和多帧图像超分辨率重建[J].吉林大学学报(工学版),2013,43(S1):365-370. 被引量:3
  • 2刘卫光,崔江涛,周利华.插值和相位相关的图像亚像素配准方法[J].计算机辅助设计与图形学学报,2005,17(6):1273-1277. 被引量:29
  • 3GREENSPAN H. Supe Preceedings of the 2002 r-resolution in MRI [C]. IEEE International Sym- posium on Biomedical Imaging, 2002: 943-946.
  • 4KENNEDY J A,ISRAEL O,FRENKEL A,et al, Super-resolution in PET imaging[J]. IEEE Trans actions on Medical Imaging, 2006, 25 (2) : 137- 147.
  • 5ZHENG Z H, WANG R, SUN K. Single remote sensing image super-resolution and denoising viasparse representation [ C]. 2011 International Workshop on Multi-Sensor Remote Sensing andMapping (M2RSM) ,2011:1-5.
  • 6JING G D,SHI Y H,LU B. Single-image super-res- olmion based on decomposition and sparse resolu- tion[C]. 2010 International Conference on Multi- media Communications ( Mediacom ), 2010: 127- 130.
  • 7VINCENGT L G. Cartoon+Texture image decom- position by the TV-L] model[J]. Image Processing On Line ,2014,4:204-219.
  • 8ZHANG X J,WU X L. Image interpolation by a- daptive 2-D autoregressive modeling and soft-deci- sion estimation[J]. IEEE Transactions on Image Processing ,2008,17(6) :887- 896.
  • 9RUDIN L, OSHER S, FATEMI E. Nonlinear to tal variation based noise removel algorithms [J].Physica D,1992,60(1-4) :259-268.
  • 10CHANT F, ESEDOGLU S. Aspects of total vari- ation regularized L1 function approximation [J ]. SIAM Journal on Applied Mathematics, 2005,65 (5) :1817-1837.

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部