期刊文献+

基于大数据分析的水电机组状态诊断研究 被引量:2

Research on the Diagnosis of Hydropower Generating Unit Condition Based on Big Data Analysis
下载PDF
导出
摘要 引入大数据分析方法对黄河上游流域各水电机组健康状况进行分析,将机组海量监测数据作为基础数据,开展数据状态评价、振动及摆度频谱分析、振动及摆度历史趋势分析、历年数据对比及主要特征分布等多尺度大数据分析研究,以评价机组健康状态及性能指标,为机组检修提供合理化建议。 The Big data analysis is introduced in this paper to analyze the health condition of the hydropower generating units in the upper stream of the Yellow river. Based on the mass monitoring data of the units,the analysis given in this paper covers condition analysis,vibration and swing spectrum analysis,trend analysis,historical data comparison analysis and main characteristics distribution analysis and other multi-dimension data analysis. The result can be used to assess the unit health condition and operation performance and to give effective suggestions and advices for the unit's repair and maintenance work.
出处 《青海电力》 2015年第3期44-47,57,共5页 Qinghai Electric Power
关键词 水电机组 大数据分析 故障特征 状态诊断 hydropower generating unit big data analysis fault features condition diagnosis
  • 相关文献

参考文献3

二级参考文献19

  • 1[1]寇惠,韩庆大.故障诊断的振动测试技术[M].北京:冶金工业出版社,1999.
  • 2[2]陈大喜,朱铁光.大型回转机械诊断现场使用技术[M].北京:机械工业出版社,2002.
  • 3[3]2000年大型水轮发电机组技术报告研讨会论文集[C].全国旋转电机标准化技术委员会,2000.
  • 4Dean J,Ghemawat S.MapReduce:Simplified data processing on large clusters[C]//Brewer E,Chen P,eds.Proc.of the OSDI.California:USENIX Association,2004:137-150.
  • 5Ekanayake J,Li Hui,Zhang Bing-jing,et al.Twister..A Runtime for Iterative MapReduce[C]//The First International Workshop on MapReduce and its Applications (MAPREDUCE'10).2010:110-119.
  • 6Bu Y Y,Howe B,Balazinska M,et al.HaLoop:Efficient iterarive data processing on large clusters[J].PVLDB2010,2010,3(1/2):285-296.
  • 7Isard M,Budiu M,Yu Y,et al.Dryad:Distributed data-parallel programs from sequential building blocks[J].ACM SIGOPS Operating Systems Review,2007,41 (3):59-72.
  • 8Zaharia M,Chowdhury M,Franklin M J,et al.Spark:Cluster Computing withWorking Sets[R].Technology report of UC Berkeley.2011.
  • 9Dittrich J,Quian'e-Ruiz J A,Jindal A,et al.Hadoop++:Making a yellow elephant run like a cheetah (without it even noticing)[J].PVLDB,2010,3(1/2):518-529.
  • 10黄海生,王汝传.基于隶属云理论的主观信任评估模型研究[J].通信学报,2008,29(4):13-19. 被引量:80

共引文献36

同被引文献14

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部