期刊文献+

Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation

Determination of ion quantity by using low-temperature ion density theory and molecular dynamics simulation
原文传递
导出
摘要 In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics(MD)simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition,spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions. In this paper, we report a method by which the ion quantity is estimated rapidly with an accuracy of 4%. This finding is based on the low-temperature ion density theory and combined with the ion crystal size obtained from experiment with the precision of a micrometer. The method is objective, straightforward, and independent of the molecular dynamics (MD) simulation. The result can be used as the reference for the MD simulation, and the method can improve the reliability and precision of MD simulation. This method is very helpful for intensively studying ion crystal, such as phase transition, spatial configuration, temporal evolution, dynamic character, cooling efficiency, and the temperature limit of the ions.
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第11期244-249,共6页 中国物理B(英文版)
基金 supported by the National Basic Research Program of China(Grant Nos.2012CB821301 and 2010CB832803) the National Natural Science Foundation of China(Grant Nos.11004222 and 91121016) the Chinese Academy of Sciences
关键词 分子动力学模拟 离子晶体 密度理论 模拟测定 低温 分子动力学仿真 晶体尺寸 空间结构 ion crystal, ion quantity, low-temperature density model, molecular dynamics simulation
  • 相关文献

参考文献24

  • 1Slattery W L, Doolen G D and Dewiit H E 1980 Phys. Rev. A 21 2087.
  • 2Mitchell T B, Bollinger J J, Dubin D H E, Huang X P, Itano W M and Baughman R H 1998 Science 282 1290.
  • 3Schm6ger L, Versolato O O, Schwarz M, Kohnen M, Windberger A, Piest B, Feuchtenbeiner S, Gutierrez J P, Leopold T, Micke P, Hansen A K, Baumann T M, Drewsen M, Ullrich J, Schmidt P O and L6pez- Urrutia J R C 2015 Science 347 1233.
  • 4Germann M, Tong X and Willitsch S 2014 Nat. Phys. 10 820.
  • 5Ostendorf A, Zhang C B, Wilson M A, Offenberg D, Roth B and Schiller S 2006 Phys. Rev. Lett. 97 243005.
  • 6Ulm S, Roβnagel J, Jacob G, Degiinther C, Dawkins S T, Poschinger U G, Nigmatullin R, Retzker A, Plenio M B, Schmidt-Kaler F and Singer K 2013 Nat. Commun. 4 2290.
  • 7Pyka K, Keller J, Partner H L, Nigmatullin R, Burgermeister T, Meier D M, Kuhlmann K, Retzker A, Plenio M B, Zurek W H, Campo A D and Mehlstaubler T E 2013 Nat. Commun. 4 2291.
  • 8Takashi B and Izumi W 2002 J. Appl Phys. 92 4109.
  • 9Roth B, Blythe P and Schiller S 2007 Phys. Rev. A 75 023402.
  • 10Du L J, Chen T, Song H F, Chen S L, LI H X, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 083702.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部