期刊文献+

面向医学图像分割的直线截距直方图倒数交叉熵方法 被引量:2

Segmentation Method Based on Line Intercept Histogram Reciprocal Cross Entropy for Medical Image
下载PDF
导出
摘要 为了进一步提高医学图像分割的速度和准确度,为临床诊断和辅助治疗提供更为充分有效的依据,本文提出了一种基于直线截距直方图的倒数交叉熵图像阈值分割方法。首先定义了直线截距直方图;然后根据医学图像的二维信息,建立该图像的直线截距直方图;最后,推导出基于该直方图的倒数交叉熵阈值选取准则,并以此对医学图像进行分割。实验结果表明,与基于混沌小生境粒子群优化(Niche chaotic mutation particle swarm optimization,NCPSO)的二维倒数熵法、基于分解的二维指数灰度熵法、基于斜分的二维对称交叉熵法及基于粒子群优化(Particle swarm optimization,PSO)的二维Tsallis交叉熵法相比,本文方法分割后的图像中目标区域完整准确,边缘细节清晰丰富,且所需运行时间大幅减少,是医学影像研究中可选择的一种快速有效的图像分割方法。 To improve the efficiency and accuracy of medical image segmentation and provide more fully effective basis for clinical diagnosis and adjunctive therapy,a medical image segmentation method based on line intercept histogram reciprocal cross entropy is proposed.Firstly,the line intercept histogram is defined.Then,the line intercept histogram of the medical image is built considering its two-dimensional information.Finally,the reciprocal cross entropy criterion for threshold selection based on the line intercept histogram is derived,according to which,the medical image is segmented.A large number of experimental results show that,compared with other methods,including two-dimensional reciprocal entropy method based on niche chaos particle swarm optimization(NCPSO),two-dimensional exponent gray entropy method based on decomposition,symmetric cross entropy method based on two-dimensional histogram oblique segmentation,two-dimensional Tsallis cross entropy method based on particle swarm optimization(PSO)and so on,the proposed method has superior image segmentation performance.In its segmentation result,object region is complete and accurate,and the edge details are clear and richer.Moreover,the running time is greatly reduced.It is a fast and effective new segmentation method which can be used in medical image research.
出处 《数据采集与处理》 CSCD 北大核心 2015年第5期982-992,共11页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(60872065)资助项目 江苏省普通高校研究生科研创新计划(SJLX15_0116)资助项目 江苏高校优势学科建设工程(2012)资助项目 中央高校基本科研业务费专项资金资助项目
关键词 医学图像分割 阈值选取 直线截距直方图 倒数交叉熵 medical image segmentation threshold selection line intercept histogram reciprocal cross entropy
  • 相关文献

参考文献22

  • 1文乔农,万遂人.WBCT与变分正则化方法的医学图像去噪[J].数据采集与处理,2011,26(4):390-394. 被引量:4
  • 2Gigengack F, Ruthotto L, Burger M, et al. Motion correction in dual gated cardiac PET using mass-preserving image regis- tration[J]. IEEE Transactions on Medical Imaging, 2012,31(3) :698-712.
  • 3Chen X, Udupa J K, Bagci U, et al. Medieal image segmentation by combining graph cuts and oriented active appearance models[J]. IEEE Transactions on Image Processing, 2012,21 (4) ~2035-2046.
  • 4李积英,党建武,王阳萍.融合量子克隆进化与二维Tsallis熵的医学图像分割算法[J].计算机辅助设计与图形学学报,2014,26(3):465-471. 被引量:16
  • 5吴一全,朱兆达.图像处理中阈值选取方法30年(1962—1992)的进展(二)[J].数据采集与处理,1993,8(4):268-282. 被引量:96
  • 6Kapur J N, Sahoo P K, Wong A K C. A new method for gray-level picture thresholding using the entropy of histogram[J]. Computer Vision, Graphics and Image Processing, 1985,29 (1) : 273-285.
  • 7Abutaleb A S. Automatic thresholding of gray-level picture using two-dimensional entropies[J].Pattern Recognition, 1989, 47(1) :22-32.
  • 8Brink A D. Thresholding of digital image using two-dimensional entropies[J]. Pattern Recognition, 1992,25 (8) :803-808.
  • 9Li C H, Lee C K. Minimum cross entropy thresholding[J]. Pattern Recognition, 1993,26(4) : 617-625.
  • 10Brink A D, Pendock N E. Minimum cross-entropy threshold selection[J]. Pattern Recognition, 1996,29 (1) : 179-189.

二级参考文献134

共引文献192

同被引文献30

  • 1冈萨雷斯.数字图像处理[M].阮秋琦,阮宇智,译.2版.北京:电子工业出版社,2007:427.
  • 2Du Y P,Parker D L.Vessel enhancement filtering in three-dimensional MR angiography[J].JMRI,1995,5(3):353-359.
  • 3Du Y P,Parker D L.Vessel enhancement filtering in three-dimensional MR angiograms using long range signal correlation[J].JMRI,1997,7(2):447-450.
  • 4Orkisz M M,Bresson C,Magnin I E,et al.Improved vessel visualization in MR angiography by nonlinear anisotropic filtering[J].Magnetic Resonace in Medicine,1997,37(6):914-919.
  • 5Frangi A F,Niessen W J,Vincken K L,et al.Multiscale vessel enhancement filtering[J].Lecture Notes in Computer Sci-ence,2000,1496:130-137.
  • 6Xu J.A generalized morphological skeleton transform using both internal and external skeleton points[J].Pattern Recogni-tion,2014,47(8):2607-2620.
  • 7Díaz P D,Pea C F,Gutiérrez N M A.Cellular automata in image processing and geometry[M].Berlin:Springer Interna-tional Publishing,2014:47-63.
  • 8Li Q,Sone S,Doi K.Selective enhancement filters for vessels and airway walls in two-and three-dimensional CT scans[J].Medical Physics,2003,30(8):2040-2051.
  • 9Florack L M J,Romony B M T H,Koenderink J J,et al.Scale and the differential structure of images[J].Image and VisionComputing,1992,10(6):376-388.
  • 10Blum H,Nagel R N.Shape description using weighted symmetric axis features[J].Pattern Recognition,1978,10(3):167-180.

引证文献2

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部