期刊文献+

一种面向时空数据的关联规则更新算法 被引量:1

An Updating Algorithm for Spatial and Temporal Data Association Rule
下载PDF
导出
摘要 现有的关联规则更新算法大多具有产生大量候选项集和多次扫描数据库的弊端,而且对时空数据的研究少之又少。针对此问题,论文提出一种基于滑动窗口的关联规则更新算法,此算法将访问数据进行行程长度编码并存储于存储器中,然后只需对存储器中的编码数据进行挖掘,不需反复读取数据库信息。同时该算法在由频繁项集产生候选项集时添加了空间约束条件,过滤了空间不相关数据,提高了算法的执行速度和处理效能。通过实验论证,此算法具有更高的挖掘效率,对智能交通、指挥控制等领域有着重要的应用价值。 Most of the present updating association rule algorithms have drawbacks that produce a large number of candidate sets,multiple scans of the database,and have a little research on the spatial and temporal data.To solve this problem,an updating association rule algorithm based on sliding window is proposed in this paper which encodes access data in memory and then only mines the encoding data in memory directly,without repeatedly reading the database information.Meanwhile,the algorithm adds a space constraints to filter irrelevant space data when generating candidate sets by frequent itemsets to improve the execution speed and processing performance.Experiment results show that the algorithm has higher mining efficiency and has important application value for intelligent transportation,command and control,etc.
出处 《计算机与数字工程》 2015年第10期1767-1770,1774,共5页 Computer & Digital Engineering
基金 重庆市自然科学基金(编号:CSTC2009BB-2287)资助
关键词 关联规则 滑动窗口 行程长度编码 时空数据 association rule sliding window run-length encoding spatial and temporal data
  • 相关文献

参考文献9

  • 1Chang-Hung Lee, Cheng-Ru Lin, Ming-Syan Chen.Sliding window filter; An efficient method for incre-mental mining[J]. Information Systems,2005,30(3):227-244.
  • 2Yun Chi, Haixun Wang, Philip S Yu,et al. Catch themoment : maintaining closed frequent itemsets over adata stream sliding window[J], Knowledge and Infor-mation Systems,2006,10(3) :265-294.
  • 3Florian Verhein, Sanjay Chawla. Minging Spatio-tem-poral pattenrs in object mobility database [C]//DataMinging and Knowledge Discovery. Hingham, KluwerAcademic Publishers, 2008 : 5-38.
  • 4Krzysztof Koperski, Jiawei Haa Discovery of SpatialAssociation Rules in Geographic Information Databases[C]//Proc. of International Symposium on Advance inSpatial Databases [Z], SSD, LNCS, vol.,SpringerVerlag, 1995,951 :47-66.
  • 5Yingjiu Li, Sencun Zhu, Sean Wang, et al. Lookinginto the Seeds of time: Discovering Temporal Patternsin large transaction sets [J]. Information Sciences,2006,176:1003-1031.
  • 6夏英,张俊,王国胤.时空关联规则挖掘算法及其在ITS中的应用[J].计算机科学,2011,38(9):173-176. 被引量:16
  • 7Jiawei Han,Mieheline Kamber.数据挖掘概念与技术[M],北京:机械工业出版社,2006.
  • 8许红,严静,张群洪.基于概念树的空间关联规则挖掘算法及其在土地利用分析中的应用[J].华中农业大学学报(社会科学版),2009(6):46-50. 被引量:8
  • 9许兆霞,林勇,李树斌,党文修,胡大鹤.实时交通预估预测仿真系统dynaCHINA参数标定及应用[J].山东科学,2009,22(6):46-49. 被引量:3

二级参考文献23

  • 1AGRAWAL T, SWAMI A. Mining association rules between sets of items in large databases[C]. New York: ACM, 1993: 207-216.
  • 2PARK J S, CHEN M S, YU P. An effective hash based algorithm for mining association rules[J]. ACM SIGMOD Record, 1995,24 (2) : 175-186.
  • 3郭仁忠.空间分析[M].武汉:武汉测绘科技大学出版社,1998:120.
  • 4VAN AERDE M,YAGAR S. Combining Traffic Management and Driver Information in Traffic Integrated Networks [ C ] //IEEE Third International Conference on-Road and Traffic Control. London, 1990:11 - 16.
  • 5LIN Yong, SONG Houbing. DynaCHINA: Specially-Buih Real-Time Traffic Prediction System for China [ C ]//Transportation Research Board 86th Annual Meeting, Washington DC, 2007. (Accession Number: 01043558).
  • 6LIN Yong, SONG Houbing. DynaCHINA : Real-time Traffic Estimation and Prediction [ J ]. IEEE Pervasive Computing, 2006 (4) : 65.
  • 7水寿松.我国自主研发的交通系统仿真后台的全面深入讨论[EB/OL].[2008-03-14].http://cfluid.imcas.net/cgi-bin/LB5000/topic.cgi?forum=42&topic=260&show=0.
  • 8Verhein F,Chawla S. Mining Spatio-temporal patterns in object mobility database[C]//Data Mining and Knowledge Discovery. Hingham, Kluwer Academic Publishers, 2008 : 5-38.
  • 9Shekhar S, Huang Y. Discovering spatial co-location patterns: a summary of results[C] // Lecture Notes in Computer Science. Berlin Heidelberg, Springer-Verlag, 2001 : 236-256.
  • 10Agrawl R, Srikant R. Fast algorithms for mining association rules[C]//Proceedings of the 20th VLDB Conference Santiago Chile, 1994.

共引文献41

同被引文献14

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部