摘要
通过空间闭合曲线积分一题多解的发散思维教学设计分析,不仅加强了斯托克斯公式和格林公式的灵活应用的思维训练,而且化解了曲线积分与曲面积分的相互转化的计算难点.
This article presents examples of divergent thought in multiple solutions of space curvilinear integrals. These examples not only strengthen students' training in flexible application of Stokes and Green Formulas, but also disintegrate the computation difficult point of mutual change of curvilinear integral and surface integral.
出处
《高等数学研究》
2015年第2期33-35,56,共4页
Studies in College Mathematics
关键词
闭合曲线积分
发散思维
space curvilinear integral
training thought