期刊文献+

使用手机前置摄像头的机动车驾驶员疲劳检测 被引量:4

Driver Drowsiness Detection by Using Front Camera of the Mobile Phone
下载PDF
导出
摘要 基于车载疲劳驾驶检测系统的需要,使用手机的前置摄像头设计了用于手机的疲劳驾驶检测系统。通过使用Haar-like特征和Adaboost分类器进行人脸的定位,并在此之上以同样的方法进行人眼的粗略检测。然后通过灰度投影结合Otsu法二值化得到眼睛的精确开度,判断人眼的状态。以此根据PERCLOS方法对驾驶员的疲劳程度进行检测。实验结果表明该系统具有较高的准确度,并对光照的变化有一定的适应性,能够有效地应用到疲劳检测中。 In order to meet the needs of vehicle driver drowsiness detection system,A driving drowsiness detection system for mobile phone is designed by using the front camera of the phone. The Haar-like feature and Adaboost classifier are used to detect the driver's face,and then,same method is used for a rough eye detection. Next,Otsu binarization is combined with gray projection to calculate the accurate eye height and evaluate the statues of eyes. Finally,a method according to the PERCLOS is used to evaluate the degree of drowsiness. Experimental results show that the system has a high accuracy,and it can adapt to the changes of light. So it can be effectively applied to the driver's drowsiness detection.
出处 《信号处理》 CSCD 北大核心 2015年第9期1138-1144,共7页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61171151) 国家重点基础研究发展计划("973"计划)基金资助项目(2012CB316400)
关键词 计算机视觉 先进驾驶辅助系统 PERCLOS 疲劳驾驶检测 灰度投影 ADABOOST computer vision advanced driver assistant system PERCLOS driver drowsiness detection gray projection Adaboost
  • 相关文献

参考文献12

  • 1Dinges D. PERCLOS:A Valid Psychophysiological Meas- ure of Alertness As Assessed by Psychomotor Vigilance. Federal Highway [ R]. Washington DC, USA, 1998.
  • 2Ivan G Daza, Luis M Bergasa, Sebastian Bronte. Fusion of Optimized Indicators from Advanced Driver Assistance Systems (ADAS) for Driver Drowsiness Detection [ J ]. Sensors, 2014, 14(1 ) : 1106-1131.
  • 3Luis M Bergasa, Jesus Nuevo, Miguel A Sotelo. Real- time system for monitoring driver vigilance [ C ]//IEEE Intelligent Vehicles Symposium, 2004.
  • 4王奕直,周凌霄,孔万增.基于Adaboost的疲劳驾驶眨眼检测[J].杭州电子科技大学学报(自然科学版),2013,33(4):35-38. 被引量:5
  • 5向飞,廖亚风,何小海.基于DSP的改进疲劳驾驶检测系统[J].微型机与应用,2014,33(5):40-42. 被引量:1
  • 6巩晓倩,蒲亦非,杨智勇,周激流.基于有限状态自动机的人眼开度PERCLOS实现算法[J].计算机应用研究,2014,31(1):307-310. 被引量:17
  • 7Papageorgiou C P, Oren M, Poggio T. A general frame- work for object detection [ C ]//the Sixth IEEE Interna- tional Conference on Computer Vision, 1998: 555-562.
  • 8Lienhart R, Maydt J. An extended set of Haar-like fea- tures for rapid object detection [ C ] fJ IEEE International Conference on Image Processing, 2002, 1 : 900-903.
  • 9Freund Y, Schapire R. A desicion-theoretic generalization of on-line learning and an application to boosting [ J ]. Computational learning theory, 1995, 904( 1 ) : 23-37.
  • 10Nobuyuki Otsu. A threshold selection method from gray- level histograms[J]. IEEE Trans Sys Man Cyber, 1979, 9( 1 ) :62-66.

二级参考文献27

  • 1王磊,吴晓娟,俞梦孙.驾驶疲劳/瞌睡检测方法的研究进展[J].生物医学工程学杂志,2007,24(1):245-248. 被引量:35
  • 2Gary Bradski, Adrian Kaehler著,于仕琪,刘瑞祯译.学习OpenCV[M].北京:清华大学出版社,2009.
  • 3曾文斌.眨眼趣谈[J].中国眼镜科技杂志,1997,(1):59-60.
  • 4Eriksson M, Papanikolopoulos N. Eye-tracking for detection of driver fatigue[ C ]. Boston: IEEE International Conference on Intelligent Transportation System, 1997:314 - 319.
  • 5Yoav Freund, Robert E Schapire. A decision-theoretic generalization of on-line learning and an application to boosting [J]. Journal of Computer and System Sciences,1997,55(1) :119 -139.
  • 6Viola P, Jones M Robust. real-time object detecfionE J]. International Journal of Computer ision,2004,54(2):137 - 154.
  • 7ROYAL D. National survey on distracted and driving attitudes and be- haviours, DOT HS 809 566 [ R ]. 2003.
  • 8J1 Qiang, LAN P, LOONEY C, et al. A probabilistic framework for modeling and real-time monitoring human fatigue[ J]. IEEE Trans on Systems, Man and Cybernetics-Part A: Systems and Hu- mans,2006,36 ( 5 ) : 862- 875.
  • 9BERGASA L M, NUEVO J, SOTELO M A,et al. Real-time system for monitoring driver vigilance[J]. IEEE Trans on Intelligent Trans- portation Systems,2006,7 ( 1 ) : 63 -77.
  • 10UENO H, KANEDA M,TSUKINO M,et al. Development of drowsiness detection system [ C]//Proc of Vehicle Navigation and Infommtion Systems Conference. New York : IEEE Press, 1994 : 15-20.

共引文献19

同被引文献24

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部